File size: 3,122 Bytes
cf8051d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
---

tags: [gradio-custom-component, custom-component-track, gradio-spreadsheet-custom-component]
title: gradio_spreadsheetcomponent
short_description: This component answers questions about spreadsheets.
colorFrom: blue
colorTo: yellow
sdk: gradio
pinned: false
app_file: space.py
app_link: https://huggingface.co/spaces/Mustafiz996/gradio_spreadsheetcomponent
---


# `gradio_spreadsheetcomponent`

<a href="https://pypi.org/project/gradio_spreadsheetcomponent/" target="_blank"><img alt="PyPI - Version" src="https://img.shields.io/pypi/v/gradio_spreadsheetcomponent"></a>  



This component is used to answer questions about spreadsheets.



## Installation



```bash

pip install gradio_spreadsheetcomponent
```



## Usage



```python

import gradio as gr

from gradio_spreadsheetcomponent import SpreadsheetComponent

from dotenv import load_dotenv

import os

import pandas as pd



def answer_question(file, question):

    if not file or not question:

        return "Please upload a file and enter a question."

    

    # Load the spreadsheet data

    df = pd.read_excel(file.name)

    

    # Create a SpreadsheetComponent instance

    spreadsheet = SpreadsheetComponent(value=df)

    

    # Use the component to answer the question

    return spreadsheet.answer_question(question)



with gr.Blocks() as demo:

    gr.Markdown("# Spreadsheet Question Answering")

    

    with gr.Row():

        file_input = gr.File(label="Upload Spreadsheet", file_types=[".xlsx"])

        question_input = gr.Textbox(label="Ask a Question")

    

    answer_output = gr.Textbox(label="Answer", interactive=False, lines=4)

    

    submit_button = gr.Button("Submit")

    submit_button.click(answer_question, inputs=[file_input, question_input], outputs=answer_output)



    

if __name__ == "__main__":

    demo.launch()



```

## `SpreadsheetComponent`

### Initialization

<table>
<thead>
<tr>
<th align="left">name</th>
<th align="left" style="width: 25%;">type</th>
<th align="left">default</th>
<th align="left">description</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left"><code>value</code></td>
<td align="left" style="width: 25%;">

```python

pandas.core.frame.DataFrame | list | dict | None

```

</td>
<td align="left"><code>None</code></td>
<td align="left">Default value to show in spreadsheet. Can be a pandas DataFrame, list of lists, or dictionary</td>
</tr>
</tbody></table>




### User function

The impact on the users predict function varies depending on whether the component is used as an input or output for an event (or both).

- When used as an Input, the component only impacts the input signature of the user function.
- When used as an output, the component only impacts the return signature of the user function.

The code snippet below is accurate in cases where the component is used as both an input and an output.

- **As output:** Is passed, the preprocessed input data sent to the user's function in the backend.


 ```python

 def predict(

     value: typing.Any

 ) -> Unknown:

     return value

 ```