File size: 4,894 Bytes
48bfe31
 
 
 
 
1594b4c
48bfe31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1594b4c
48bfe31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

import gradio as gr
from app import demo as app
import os

_docs = {'SpreadsheetComponent': {'description': 'Creates a spreadsheet component that can display and edit tabular data with question answering capabilities.', 'members': {'__init__': {'value': {'type': 'pandas.core.frame.DataFrame | list | dict | None', 'default': 'None', 'description': 'Default value to show in spreadsheet. Can be a pandas DataFrame, list of lists, or dictionary'}}, 'postprocess': {}, 'preprocess': {'return': {'type': 'typing.Any', 'description': "The preprocessed input data sent to the user's function in the backend."}, 'value': None}}, 'events': {}}, '__meta__': {'additional_interfaces': {}, 'user_fn_refs': {'SpreadsheetComponent': []}}}

abs_path = os.path.join(os.path.dirname(__file__), "css.css")

with gr.Blocks(
    css=abs_path,
    theme=gr.themes.Default(
        font_mono=[
            gr.themes.GoogleFont("Inconsolata"),
            "monospace",
        ],
    ),
) as demo:
    gr.Markdown(
"""

# `gradio_spreadsheetcomponent`



<div style="display: flex; gap: 7px;">

<a href="https://pypi.org/project/gradio_spreadsheetcomponent/" target="_blank"><img alt="PyPI - Version" src="https://img.shields.io/pypi/v/gradio_spreadsheetcomponent"></a>  

</div>



This component is used to answer questions about spreadsheets.

""", elem_classes=["md-custom"], header_links=True)
    app.render()
    gr.Markdown(
"""

## Installation



```bash

pip install gradio_spreadsheetcomponent

```



## Usage



```python

import gradio as gr

from gradio_spreadsheetcomponent import SpreadsheetComponent

from dotenv import load_dotenv

import os

import pandas as pd



def answer_question(file, question):

    if not file or not question:

        return "Please upload a file and enter a question."

    

    # Load the spreadsheet data

    df = pd.read_excel(file.name)

    

    # Create a SpreadsheetComponent instance

    spreadsheet = SpreadsheetComponent(value=df)

    

    # Use the component to answer the question

    return spreadsheet.answer_question(question)



with gr.Blocks() as demo:

    gr.Markdown("# Spreadsheet Question Answering")

    

    with gr.Row():

        file_input = gr.File(label="Upload Spreadsheet", file_types=[".xlsx"])

        question_input = gr.Textbox(label="Ask a Question")

    

    answer_output = gr.Textbox(label="Answer", interactive=False, lines=4)

    

    submit_button = gr.Button("Submit")

    submit_button.click(answer_question, inputs=[file_input, question_input], outputs=answer_output)



    

if __name__ == "__main__":

    demo.launch()



```

""", elem_classes=["md-custom"], header_links=True)


    gr.Markdown("""

## `SpreadsheetComponent`



### Initialization

""", elem_classes=["md-custom"], header_links=True)

    gr.ParamViewer(value=_docs["SpreadsheetComponent"]["members"]["__init__"], linkify=[])




    gr.Markdown("""



### User function



The impact on the users predict function varies depending on whether the component is used as an input or output for an event (or both).



- When used as an Input, the component only impacts the input signature of the user function.

- When used as an output, the component only impacts the return signature of the user function.



The code snippet below is accurate in cases where the component is used as both an input and an output.



- **As input:** Is passed, the preprocessed input data sent to the user's function in the backend.





 ```python

def predict(

    value: typing.Any

) -> Unknown:

    return value

```

""", elem_classes=["md-custom", "SpreadsheetComponent-user-fn"], header_links=True)




    demo.load(None, js=r"""function() {

    const refs = {};

    const user_fn_refs = {

          SpreadsheetComponent: [], };

    requestAnimationFrame(() => {



        Object.entries(user_fn_refs).forEach(([key, refs]) => {

            if (refs.length > 0) {

                const el = document.querySelector(`.${key}-user-fn`);

                if (!el) return;

                refs.forEach(ref => {

                    el.innerHTML = el.innerHTML.replace(

                        new RegExp("\\b"+ref+"\\b", "g"),

                        `<a href="#h-${ref.toLowerCase()}">${ref}</a>`

                    );

                })

            }

        })



        Object.entries(refs).forEach(([key, refs]) => {

            if (refs.length > 0) {

                const el = document.querySelector(`.${key}`);

                if (!el) return;

                refs.forEach(ref => {

                    el.innerHTML = el.innerHTML.replace(

                        new RegExp("\\b"+ref+"\\b", "g"),

                        `<a href="#h-${ref.toLowerCase()}">${ref}</a>`

                    );

                })

            }

        })

    })

}



""")

demo.launch()