|
from typing import Any, List |
|
import cv2 |
|
import insightface |
|
import threading |
|
import numpy as np |
|
import modules.globals |
|
import logging |
|
import modules.processors.frame.core |
|
from modules.core import update_status |
|
from modules.face_analyser import get_one_face, get_many_faces, default_source_face |
|
from modules.typing import Face, Frame |
|
from modules.utilities import ( |
|
conditional_download, |
|
is_image, |
|
is_video, |
|
) |
|
from modules.cluster_analysis import find_closest_centroid |
|
import os |
|
|
|
FACE_SWAPPER = None |
|
THREAD_LOCK = threading.Lock() |
|
NAME = "DLC.FACE-SWAPPER" |
|
|
|
abs_dir = os.path.dirname(os.path.abspath(__file__)) |
|
models_dir = os.path.join( |
|
os.path.dirname(os.path.dirname(os.path.dirname(abs_dir))), "models" |
|
) |
|
|
|
|
|
def pre_check() -> bool: |
|
download_directory_path = abs_dir |
|
conditional_download( |
|
download_directory_path, |
|
[ |
|
"https://huggingface.co/hacksider/deep-live-cam/blob/main/inswapper_128_fp16.onnx" |
|
], |
|
) |
|
return True |
|
|
|
|
|
def pre_start() -> bool: |
|
if not modules.globals.map_faces and not is_image(modules.globals.source_path): |
|
update_status("Select an image for source path.", NAME) |
|
return False |
|
elif not modules.globals.map_faces and not get_one_face( |
|
cv2.imread(modules.globals.source_path) |
|
): |
|
update_status("No face in source path detected.", NAME) |
|
return False |
|
if not is_image(modules.globals.target_path) and not is_video( |
|
modules.globals.target_path |
|
): |
|
update_status("Select an image or video for target path.", NAME) |
|
return False |
|
return True |
|
|
|
|
|
def get_face_swapper() -> Any: |
|
global FACE_SWAPPER |
|
|
|
with THREAD_LOCK: |
|
if FACE_SWAPPER is None: |
|
model_path = os.path.join(models_dir, "inswapper_128_fp16.onnx") |
|
FACE_SWAPPER = insightface.model_zoo.get_model( |
|
model_path, providers=modules.globals.execution_providers |
|
) |
|
return FACE_SWAPPER |
|
|
|
|
|
def swap_face(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame: |
|
face_swapper = get_face_swapper() |
|
|
|
|
|
swapped_frame = face_swapper.get( |
|
temp_frame, target_face, source_face, paste_back=True |
|
) |
|
|
|
if modules.globals.mouth_mask: |
|
|
|
face_mask = create_face_mask(target_face, temp_frame) |
|
|
|
|
|
mouth_mask, mouth_cutout, mouth_box, lower_lip_polygon = ( |
|
create_lower_mouth_mask(target_face, temp_frame) |
|
) |
|
|
|
|
|
swapped_frame = apply_mouth_area( |
|
swapped_frame, mouth_cutout, mouth_box, face_mask, lower_lip_polygon |
|
) |
|
|
|
if modules.globals.show_mouth_mask_box: |
|
mouth_mask_data = (mouth_mask, mouth_cutout, mouth_box, lower_lip_polygon) |
|
swapped_frame = draw_mouth_mask_visualization( |
|
swapped_frame, target_face, mouth_mask_data |
|
) |
|
|
|
return swapped_frame |
|
|
|
|
|
def process_frame(source_face: Face, temp_frame: Frame) -> Frame: |
|
if modules.globals.color_correction: |
|
temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB) |
|
|
|
if modules.globals.many_faces: |
|
many_faces = get_many_faces(temp_frame) |
|
if many_faces: |
|
for target_face in many_faces: |
|
if source_face and target_face: |
|
temp_frame = swap_face(source_face, target_face, temp_frame) |
|
else: |
|
print("Face detection failed for target/source.") |
|
else: |
|
target_face = get_one_face(temp_frame) |
|
if target_face and source_face: |
|
temp_frame = swap_face(source_face, target_face, temp_frame) |
|
else: |
|
logging.error("Face detection failed for target or source.") |
|
return temp_frame |
|
|
|
|
|
|
|
def process_frame_v2(temp_frame: Frame, temp_frame_path: str = "") -> Frame: |
|
if is_image(modules.globals.target_path): |
|
if modules.globals.many_faces: |
|
source_face = default_source_face() |
|
for map in modules.globals.source_target_map: |
|
target_face = map["target"]["face"] |
|
temp_frame = swap_face(source_face, target_face, temp_frame) |
|
|
|
elif not modules.globals.many_faces: |
|
for map in modules.globals.source_target_map: |
|
if "source" in map: |
|
source_face = map["source"]["face"] |
|
target_face = map["target"]["face"] |
|
temp_frame = swap_face(source_face, target_face, temp_frame) |
|
|
|
elif is_video(modules.globals.target_path): |
|
if modules.globals.many_faces: |
|
source_face = default_source_face() |
|
for map in modules.globals.source_target_map: |
|
target_frame = [ |
|
f |
|
for f in map["target_faces_in_frame"] |
|
if f["location"] == temp_frame_path |
|
] |
|
|
|
for frame in target_frame: |
|
for target_face in frame["faces"]: |
|
temp_frame = swap_face(source_face, target_face, temp_frame) |
|
|
|
elif not modules.globals.many_faces: |
|
for map in modules.globals.source_target_map: |
|
if "source" in map: |
|
target_frame = [ |
|
f |
|
for f in map["target_faces_in_frame"] |
|
if f["location"] == temp_frame_path |
|
] |
|
source_face = map["source"]["face"] |
|
|
|
for frame in target_frame: |
|
for target_face in frame["faces"]: |
|
temp_frame = swap_face(source_face, target_face, temp_frame) |
|
|
|
else: |
|
detected_faces = get_many_faces(temp_frame) |
|
if modules.globals.many_faces: |
|
if detected_faces: |
|
source_face = default_source_face() |
|
for target_face in detected_faces: |
|
temp_frame = swap_face(source_face, target_face, temp_frame) |
|
|
|
elif not modules.globals.many_faces: |
|
if detected_faces: |
|
if len(detected_faces) <= len( |
|
modules.globals.simple_map["target_embeddings"] |
|
): |
|
for detected_face in detected_faces: |
|
closest_centroid_index, _ = find_closest_centroid( |
|
modules.globals.simple_map["target_embeddings"], |
|
detected_face.normed_embedding, |
|
) |
|
|
|
temp_frame = swap_face( |
|
modules.globals.simple_map["source_faces"][ |
|
closest_centroid_index |
|
], |
|
detected_face, |
|
temp_frame, |
|
) |
|
else: |
|
detected_faces_centroids = [] |
|
for face in detected_faces: |
|
detected_faces_centroids.append(face.normed_embedding) |
|
i = 0 |
|
for target_embedding in modules.globals.simple_map[ |
|
"target_embeddings" |
|
]: |
|
closest_centroid_index, _ = find_closest_centroid( |
|
detected_faces_centroids, target_embedding |
|
) |
|
|
|
temp_frame = swap_face( |
|
modules.globals.simple_map["source_faces"][i], |
|
detected_faces[closest_centroid_index], |
|
temp_frame, |
|
) |
|
i += 1 |
|
return temp_frame |
|
|
|
|
|
def process_frames( |
|
source_path: str, temp_frame_paths: List[str], progress: Any = None |
|
) -> None: |
|
if not modules.globals.map_faces: |
|
source_face = get_one_face(cv2.imread(source_path)) |
|
for temp_frame_path in temp_frame_paths: |
|
temp_frame = cv2.imread(temp_frame_path) |
|
try: |
|
result = process_frame(source_face, temp_frame) |
|
cv2.imwrite(temp_frame_path, result) |
|
except Exception as exception: |
|
print(exception) |
|
pass |
|
if progress: |
|
progress.update(1) |
|
else: |
|
for temp_frame_path in temp_frame_paths: |
|
temp_frame = cv2.imread(temp_frame_path) |
|
try: |
|
result = process_frame_v2(temp_frame, temp_frame_path) |
|
cv2.imwrite(temp_frame_path, result) |
|
except Exception as exception: |
|
print(exception) |
|
pass |
|
if progress: |
|
progress.update(1) |
|
|
|
|
|
def process_image(source_path: str, target_path: str, output_path: str) -> None: |
|
if not modules.globals.map_faces: |
|
source_face = get_one_face(cv2.imread(source_path)) |
|
target_frame = cv2.imread(target_path) |
|
result = process_frame(source_face, target_frame) |
|
cv2.imwrite(output_path, result) |
|
else: |
|
if modules.globals.many_faces: |
|
update_status( |
|
"Many faces enabled. Using first source image. Progressing...", NAME |
|
) |
|
target_frame = cv2.imread(output_path) |
|
result = process_frame_v2(target_frame) |
|
cv2.imwrite(output_path, result) |
|
|
|
|
|
def process_video(source_path: str, temp_frame_paths: List[str]) -> None: |
|
if modules.globals.map_faces and modules.globals.many_faces: |
|
update_status( |
|
"Many faces enabled. Using first source image. Progressing...", NAME |
|
) |
|
modules.processors.frame.core.process_video( |
|
source_path, temp_frame_paths, process_frames |
|
) |
|
|
|
|
|
def create_lower_mouth_mask( |
|
face: Face, frame: Frame |
|
) -> (np.ndarray, np.ndarray, tuple, np.ndarray): |
|
mask = np.zeros(frame.shape[:2], dtype=np.uint8) |
|
mouth_cutout = None |
|
landmarks = face.landmark_2d_106 |
|
if landmarks is not None: |
|
|
|
lower_lip_order = [ |
|
65, |
|
66, |
|
62, |
|
70, |
|
69, |
|
18, |
|
19, |
|
20, |
|
21, |
|
22, |
|
23, |
|
24, |
|
0, |
|
8, |
|
7, |
|
6, |
|
5, |
|
4, |
|
3, |
|
2, |
|
65, |
|
] |
|
lower_lip_landmarks = landmarks[lower_lip_order].astype( |
|
np.float32 |
|
) |
|
|
|
|
|
center = np.mean(lower_lip_landmarks, axis=0) |
|
|
|
|
|
expansion_factor = ( |
|
1 + modules.globals.mask_down_size |
|
) |
|
expanded_landmarks = (lower_lip_landmarks - center) * expansion_factor + center |
|
|
|
|
|
toplip_indices = [ |
|
20, |
|
0, |
|
1, |
|
2, |
|
3, |
|
4, |
|
5, |
|
] |
|
toplip_extension = ( |
|
modules.globals.mask_size * 0.5 |
|
) |
|
for idx in toplip_indices: |
|
direction = expanded_landmarks[idx] - center |
|
direction = direction / np.linalg.norm(direction) |
|
expanded_landmarks[idx] += direction * toplip_extension |
|
|
|
|
|
chin_indices = [ |
|
11, |
|
12, |
|
13, |
|
14, |
|
15, |
|
16, |
|
] |
|
chin_extension = 2 * 0.2 |
|
for idx in chin_indices: |
|
expanded_landmarks[idx][1] += ( |
|
expanded_landmarks[idx][1] - center[1] |
|
) * chin_extension |
|
|
|
|
|
expanded_landmarks = expanded_landmarks.astype(np.int32) |
|
|
|
|
|
min_x, min_y = np.min(expanded_landmarks, axis=0) |
|
max_x, max_y = np.max(expanded_landmarks, axis=0) |
|
|
|
|
|
padding = int((max_x - min_x) * 0.1) |
|
min_x = max(0, min_x - padding) |
|
min_y = max(0, min_y - padding) |
|
max_x = min(frame.shape[1], max_x + padding) |
|
max_y = min(frame.shape[0], max_y + padding) |
|
|
|
|
|
if max_x <= min_x or max_y <= min_y: |
|
if (max_x - min_x) <= 1: |
|
max_x = min_x + 1 |
|
if (max_y - min_y) <= 1: |
|
max_y = min_y + 1 |
|
|
|
|
|
mask_roi = np.zeros((max_y - min_y, max_x - min_x), dtype=np.uint8) |
|
cv2.fillPoly(mask_roi, [expanded_landmarks - [min_x, min_y]], 255) |
|
|
|
|
|
mask_roi = cv2.GaussianBlur(mask_roi, (15, 15), 5) |
|
|
|
|
|
mask[min_y:max_y, min_x:max_x] = mask_roi |
|
|
|
|
|
mouth_cutout = frame[min_y:max_y, min_x:max_x].copy() |
|
|
|
|
|
lower_lip_polygon = expanded_landmarks |
|
|
|
return mask, mouth_cutout, (min_x, min_y, max_x, max_y), lower_lip_polygon |
|
|
|
|
|
def draw_mouth_mask_visualization( |
|
frame: Frame, face: Face, mouth_mask_data: tuple |
|
) -> Frame: |
|
landmarks = face.landmark_2d_106 |
|
if landmarks is not None and mouth_mask_data is not None: |
|
mask, mouth_cutout, (min_x, min_y, max_x, max_y), lower_lip_polygon = ( |
|
mouth_mask_data |
|
) |
|
|
|
vis_frame = frame.copy() |
|
|
|
|
|
height, width = vis_frame.shape[:2] |
|
min_x, min_y = max(0, min_x), max(0, min_y) |
|
max_x, max_y = min(width, max_x), min(height, max_y) |
|
|
|
|
|
mask_region = mask[0 : max_y - min_y, 0 : max_x - min_x] |
|
|
|
|
|
|
|
|
|
|
|
vis_region = vis_frame[min_y:max_y, min_x:max_x] |
|
|
|
|
|
|
|
|
|
|
|
|
|
cv2.polylines(vis_frame, [lower_lip_polygon], True, (0, 255, 0), 2) |
|
|
|
|
|
|
|
|
|
|
|
feather_amount = max( |
|
1, |
|
min( |
|
30, |
|
(max_x - min_x) // modules.globals.mask_feather_ratio, |
|
(max_y - min_y) // modules.globals.mask_feather_ratio, |
|
), |
|
) |
|
|
|
kernel_size = 2 * feather_amount + 1 |
|
feathered_mask = cv2.GaussianBlur( |
|
mask_region.astype(float), (kernel_size, kernel_size), 0 |
|
) |
|
feathered_mask = (feathered_mask / feathered_mask.max() * 255).astype(np.uint8) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cv2.putText( |
|
vis_frame, |
|
"Lower Mouth Mask", |
|
(min_x, min_y - 10), |
|
cv2.FONT_HERSHEY_SIMPLEX, |
|
0.5, |
|
(255, 255, 255), |
|
1, |
|
) |
|
cv2.putText( |
|
vis_frame, |
|
"Feathered Mask", |
|
(min_x, max_y + 20), |
|
cv2.FONT_HERSHEY_SIMPLEX, |
|
0.5, |
|
(255, 255, 255), |
|
1, |
|
) |
|
|
|
return vis_frame |
|
return frame |
|
|
|
|
|
def apply_mouth_area( |
|
frame: np.ndarray, |
|
mouth_cutout: np.ndarray, |
|
mouth_box: tuple, |
|
face_mask: np.ndarray, |
|
mouth_polygon: np.ndarray, |
|
) -> np.ndarray: |
|
min_x, min_y, max_x, max_y = mouth_box |
|
box_width = max_x - min_x |
|
box_height = max_y - min_y |
|
|
|
if ( |
|
mouth_cutout is None |
|
or box_width is None |
|
or box_height is None |
|
or face_mask is None |
|
or mouth_polygon is None |
|
): |
|
return frame |
|
|
|
try: |
|
resized_mouth_cutout = cv2.resize(mouth_cutout, (box_width, box_height)) |
|
roi = frame[min_y:max_y, min_x:max_x] |
|
|
|
if roi.shape != resized_mouth_cutout.shape: |
|
resized_mouth_cutout = cv2.resize( |
|
resized_mouth_cutout, (roi.shape[1], roi.shape[0]) |
|
) |
|
|
|
color_corrected_mouth = apply_color_transfer(resized_mouth_cutout, roi) |
|
|
|
|
|
polygon_mask = np.zeros(roi.shape[:2], dtype=np.uint8) |
|
adjusted_polygon = mouth_polygon - [min_x, min_y] |
|
cv2.fillPoly(polygon_mask, [adjusted_polygon], 255) |
|
|
|
|
|
feather_amount = min( |
|
30, |
|
box_width // modules.globals.mask_feather_ratio, |
|
box_height // modules.globals.mask_feather_ratio, |
|
) |
|
feathered_mask = cv2.GaussianBlur( |
|
polygon_mask.astype(float), (0, 0), feather_amount |
|
) |
|
feathered_mask = feathered_mask / feathered_mask.max() |
|
|
|
face_mask_roi = face_mask[min_y:max_y, min_x:max_x] |
|
combined_mask = feathered_mask * (face_mask_roi / 255.0) |
|
|
|
combined_mask = combined_mask[:, :, np.newaxis] |
|
blended = ( |
|
color_corrected_mouth * combined_mask + roi * (1 - combined_mask) |
|
).astype(np.uint8) |
|
|
|
|
|
face_mask_3channel = ( |
|
np.repeat(face_mask_roi[:, :, np.newaxis], 3, axis=2) / 255.0 |
|
) |
|
final_blend = blended * face_mask_3channel + roi * (1 - face_mask_3channel) |
|
|
|
frame[min_y:max_y, min_x:max_x] = final_blend.astype(np.uint8) |
|
except Exception as e: |
|
pass |
|
|
|
return frame |
|
|
|
|
|
def create_face_mask(face: Face, frame: Frame) -> np.ndarray: |
|
mask = np.zeros(frame.shape[:2], dtype=np.uint8) |
|
landmarks = face.landmark_2d_106 |
|
if landmarks is not None: |
|
|
|
landmarks = landmarks.astype(np.int32) |
|
|
|
|
|
right_side_face = landmarks[0:16] |
|
left_side_face = landmarks[17:32] |
|
right_eye = landmarks[33:42] |
|
right_eye_brow = landmarks[43:51] |
|
left_eye = landmarks[87:96] |
|
left_eye_brow = landmarks[97:105] |
|
|
|
|
|
right_eyebrow_top = np.min(right_eye_brow[:, 1]) |
|
left_eyebrow_top = np.min(left_eye_brow[:, 1]) |
|
eyebrow_top = min(right_eyebrow_top, left_eyebrow_top) |
|
|
|
face_top = np.min([right_side_face[0, 1], left_side_face[-1, 1]]) |
|
forehead_height = face_top - eyebrow_top |
|
extended_forehead_height = int(forehead_height * 5.0) |
|
|
|
|
|
forehead_left = right_side_face[0].copy() |
|
forehead_right = left_side_face[-1].copy() |
|
forehead_left[1] -= extended_forehead_height |
|
forehead_right[1] -= extended_forehead_height |
|
|
|
|
|
face_outline = np.vstack( |
|
[ |
|
[forehead_left], |
|
right_side_face, |
|
left_side_face[ |
|
::-1 |
|
], |
|
[forehead_right], |
|
] |
|
) |
|
|
|
|
|
padding = int( |
|
np.linalg.norm(right_side_face[0] - left_side_face[-1]) * 0.05 |
|
) |
|
|
|
|
|
hull = cv2.convexHull(face_outline) |
|
hull_padded = [] |
|
for point in hull: |
|
x, y = point[0] |
|
center = np.mean(face_outline, axis=0) |
|
direction = np.array([x, y]) - center |
|
direction = direction / np.linalg.norm(direction) |
|
padded_point = np.array([x, y]) + direction * padding |
|
hull_padded.append(padded_point) |
|
|
|
hull_padded = np.array(hull_padded, dtype=np.int32) |
|
|
|
|
|
cv2.fillConvexPoly(mask, hull_padded, 255) |
|
|
|
|
|
mask = cv2.GaussianBlur(mask, (5, 5), 3) |
|
|
|
return mask |
|
|
|
|
|
def apply_color_transfer(source, target): |
|
""" |
|
Apply color transfer from target to source image |
|
""" |
|
source = cv2.cvtColor(source, cv2.COLOR_BGR2LAB).astype("float32") |
|
target = cv2.cvtColor(target, cv2.COLOR_BGR2LAB).astype("float32") |
|
|
|
source_mean, source_std = cv2.meanStdDev(source) |
|
target_mean, target_std = cv2.meanStdDev(target) |
|
|
|
|
|
source_mean = source_mean.reshape(1, 1, 3) |
|
source_std = source_std.reshape(1, 1, 3) |
|
target_mean = target_mean.reshape(1, 1, 3) |
|
target_std = target_std.reshape(1, 1, 3) |
|
|
|
|
|
source = (source - source_mean) * (target_std / source_std) + target_mean |
|
|
|
return cv2.cvtColor(np.clip(source, 0, 255).astype("uint8"), cv2.COLOR_LAB2BGR) |
|
|