Spaces:
Runtime error
Runtime error
| import torch | |
| # from inference.tts.fs import FastSpeechInfer | |
| # from modules.tts.fs2_orig import FastSpeech2Orig | |
| from inference.tts.base_tts_infer import BaseTTSInfer | |
| from modules.tts.diffspeech.shallow_diffusion_tts import GaussianDiffusion | |
| from utils.commons.ckpt_utils import load_ckpt | |
| from utils.commons.hparams import hparams | |
| class DiffSpeechInfer(BaseTTSInfer): | |
| def build_model(self): | |
| dict_size = len(self.ph_encoder) | |
| model = GaussianDiffusion(dict_size, self.hparams) | |
| model.eval() | |
| load_ckpt(model, hparams['work_dir'], 'model') | |
| return model | |
| def forward_model(self, inp): | |
| sample = self.input_to_batch(inp) | |
| txt_tokens = sample['txt_tokens'] # [B, T_t] | |
| spk_id = sample.get('spk_ids') | |
| with torch.no_grad(): | |
| output = self.model(txt_tokens, spk_id=spk_id, ref_mels=None, infer=True) | |
| mel_out = output['mel_out'] | |
| wav_out = self.run_vocoder(mel_out) | |
| wav_out = wav_out.cpu().numpy() | |
| return wav_out[0] | |
| if __name__ == '__main__': | |
| DiffSpeechInfer.example_run() | |