File size: 9,497 Bytes
ca40fb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfaaeeb
 
ca40fb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import streamlit as st
from knowledge_bases import KNOWLEDGE_BASE_OPTIONS, SYSTEM_PROMPTS
import genparam
from functions import (
    check_password,
    initialize_session_state,
    setup_client,
    fetch_response,
    capture_tokens
)

# Custom CSS for the three-column layout
three_column_style = """
    <style>
    .stColumn {
        padding: 0.5rem;
        border-right: 1px solid #dedede;
    }
    .stColumn:last-child {
        border-right: none;
    }
    .chat-container {
        height: calc(100vh - 200px);
        overflow-y: auto;
        display: flex;
        flex-direction: column;
    }
    .chat-messages {
        display: flex;
        flex-direction: column;
        gap: 1rem;
    }
    </style>
"""

def main():
    # Page configuration
    st.set_page_config(
        page_title="Fading Moments",
        page_icon="🌫️",
        initial_sidebar_state="collapsed",
        layout="wide"
    )

    initialize_session_state()
    st.markdown(three_column_style, unsafe_allow_html=True)
    
    # Sidebar configuration
    st.sidebar.header('The Solutioning Sages')
    st.sidebar.divider()
    
    # Knowledge Base Selection
    selected_kb = st.sidebar.selectbox(
        "Select Knowledge Base",
        KNOWLEDGE_BASE_OPTIONS,
        index=KNOWLEDGE_BASE_OPTIONS.index(st.session_state.selected_kb)
    )
    
    # Update knowledge base if selection changes
    if selected_kb != st.session_state.selected_kb:
        st.session_state.selected_kb = selected_kb
        
    # Display current knowledge base contents
    with st.sidebar.expander("Knowledge Base Contents"):
        st.write("📄 [Knowledge base files would be listed here]")
    
    # Display active model information
    st.sidebar.divider()
    active_model = genparam.SELECTED_MODEL_1 if genparam.ACTIVE_MODEL == 0 else genparam.SELECTED_MODEL_2
    st.sidebar.markdown("**Active Model:**")
    st.sidebar.code(active_model)
    
    st.sidebar.divider()
    
    # Display token statistics in sidebar
    st.sidebar.subheader("Token Usage Statistics")
    if st.session_state.token_statistics:
        interaction_count = 0
        stats_by_time = {}
        
        # Group stats by timestamp
        for stat in st.session_state.token_statistics:
            if stat["timestamp"] not in stats_by_time:
                stats_by_time[stat["timestamp"]] = []
            stats_by_time[stat["timestamp"]].append(stat)
        
        # Display grouped stats
        for timestamp, stats in stats_by_time.items():
            interaction_count += 1
            st.sidebar.markdown(f"**Interaction {interaction_count}** ({timestamp})")
            
            total_input = sum(stat['input_tokens'] for stat in stats)
            total_output = sum(stat['output_tokens'] for stat in stats)
            total = total_input + total_output
            
            for stat in stats:
                st.sidebar.markdown(
                    f"_{stat['bot_name']}_  \n"
                    f"Input: {stat['input_tokens']} tokens  \n"
                    f"Output: {stat['output_tokens']} tokens  \n"
                    f"Total: {stat['total_tokens']} tokens"
                )
            
            st.sidebar.markdown("**Interaction Totals:**")
            st.sidebar.markdown(
                f"Total Input: {total_input} tokens  \n"
                f"Total Output: {total_output} tokens  \n"
                f"Total Usage: {total} tokens"
            )
            st.sidebar.markdown("---")

    if not check_password():
        st.stop()

    # Initialize WatsonX client
    wml_credentials, client = setup_client()

    # Get user input
    user_input = st.chat_input("Ask your question here", key="user_input")
    
    if user_input:
        # Create three columns
        col1, col2, col3 = st.columns(3)
        
        # First column - PATH-er B.
        with col1:
            st.markdown("<div class='chat-container'>", unsafe_allow_html=True)
            st.subheader(f"{genparam.BOT_1_AVATAR} {genparam.BOT_1_NAME}")
            st.markdown("<div class='chat-messages'>", unsafe_allow_html=True)
            
            # Display chat history
            for message in st.session_state.chat_history_1:
                with st.chat_message(message["role"], avatar=message.get("avatar", None)):
                    st.markdown(message['content'])
            
            # Display new messages
            with st.chat_message("user", avatar=genparam.USER_AVATAR):
                st.markdown(user_input)
            
            st.session_state.chat_history_1.append({
                "role": "user", 
                "content": user_input, 
                "avatar": genparam.USER_AVATAR
            })

            # Get bot response
            system_prompt = SYSTEM_PROMPTS[st.session_state.selected_kb]["bot_1"]
            stream, prompt_data = fetch_response(
                user_input, 
                client,
                system_prompt,
                st.session_state.chat_history_1
            )

            with st.chat_message(genparam.BOT_1_NAME, avatar=genparam.BOT_1_AVATAR):
                response = st.write_stream(stream)
            
            st.session_state.chat_history_1.append({
                "role": genparam.BOT_1_NAME, 
                "content": response, 
                "avatar": genparam.BOT_1_AVATAR
            })

            # Capture tokens if enabled
            if genparam.TOKEN_CAPTURE_ENABLED:
                token_stats = capture_tokens(prompt_data, response, client, genparam.BOT_1_NAME)
                if token_stats:
                    st.session_state.token_statistics.append(token_stats)

            st.markdown("</div></div>", unsafe_allow_html=True)

        # Second column - MOD-ther S.
        with col2:
            st.markdown("<div class='chat-container'>", unsafe_allow_html=True)
            st.subheader(f"{genparam.BOT_2_AVATAR} {genparam.BOT_2_NAME}")
            st.markdown("<div class='chat-messages'>", unsafe_allow_html=True)
            
            # Display chat history
            for message in st.session_state.chat_history_2:
                with st.chat_message(message["role"], avatar=message.get("avatar", None)):
                    st.markdown(message['content'])
            
            st.session_state.chat_history_2.append({
                "role": "user", 
                "content": user_input, 
                "avatar": genparam.USER_AVATAR
            })

            # Get bot response
            system_prompt = SYSTEM_PROMPTS[st.session_state.selected_kb]["bot_2"]
            stream, prompt_data = fetch_response(
                user_input,
                client,
                system_prompt,
                st.session_state.chat_history_2
            )

            with st.chat_message(genparam.BOT_2_NAME, avatar=genparam.BOT_2_AVATAR):
                response = st.write_stream(stream)
            
            st.session_state.chat_history_2.append({
                "role": genparam.BOT_2_NAME, 
                "content": response, 
                "avatar": genparam.BOT_2_AVATAR
            })

            # Capture tokens if enabled
            if genparam.TOKEN_CAPTURE_ENABLED:
                token_stats = capture_tokens(prompt_data, response, client, genparam.BOT_2_NAME)
                if token_stats:
                    st.session_state.token_statistics.append(token_stats)

            st.markdown("</div></div>", unsafe_allow_html=True)
            
        # Third column - SYS-ter V.
        with col3:
            st.markdown("<div class='chat-container'>", unsafe_allow_html=True)
            st.subheader(f"{genparam.BOT_3_AVATAR} {genparam.BOT_3_NAME}")
            st.markdown("<div class='chat-messages'>", unsafe_allow_html=True)
            
            # Display chat history
            for message in st.session_state.chat_history_3:
                with st.chat_message(message["role"], avatar=message.get("avatar", None)):
                    st.markdown(message['content'])
            
            st.session_state.chat_history_3.append({
                "role": "user", 
                "content": user_input, 
                "avatar": genparam.USER_AVATAR
            })

            # Get bot response
            system_prompt = SYSTEM_PROMPTS[st.session_state.selected_kb]["bot_3"]
            stream, prompt_data = fetch_response(
                user_input,
                client,
                system_prompt,
                st.session_state.chat_history_3
            )

            with st.chat_message(genparam.BOT_3_NAME, avatar=genparam.BOT_3_AVATAR):
                response = st.write_stream(stream)
            
            st.session_state.chat_history_3.append({
                "role": genparam.BOT_3_NAME, 
                "content": response, 
                "avatar": genparam.BOT_3_AVATAR
            })

            # Capture tokens if enabled
            if genparam.TOKEN_CAPTURE_ENABLED:
                token_stats = capture_tokens(prompt_data, response, client, genparam.BOT_3_NAME)
                if token_stats:
                    st.session_state.token_statistics.append(token_stats)

            st.markdown("</div></div>", unsafe_allow_html=True)

        # Update sidebar with new question
        st.sidebar.markdown("---")
        st.sidebar.markdown("**Latest Question:**")
        st.sidebar.markdown(f"_{user_input}_")

if __name__ == "__main__":
    main()