File size: 14,770 Bytes
5142da8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
import streamlit as st
from io import BytesIO
import ibm_watsonx_ai
import secretsload
import genparam
import requests
import time
import re
import json
from ibm_watsonx_ai.foundation_models import ModelInference
from ibm_watsonx_ai import Credentials, APIClient
from ibm_watsonx_ai.metanames import GenTextParamsMetaNames as GenParams
from ibm_watsonx_ai.metanames import GenTextReturnOptMetaNames as RetParams
from ibm_watsonx_ai.foundation_models import Embeddings
from ibm_watsonx_ai.foundation_models.utils.enums import EmbeddingTypes
from pymilvus import MilvusClient
from secretsload import load_stsecrets
credentials = load_stsecrets()
st.set_page_config(
page_title="The Tribunal",
page_icon="🥸",
initial_sidebar_state="collapsed",
layout="wide"
)
# Password protection
def check_password():
def password_entered():
if st.session_state["password"] == st.secrets["app_password"]:
st.session_state["password_correct"] = True
del st.session_state["password"]
else:
st.session_state["password_correct"] = False
if "password_correct" not in st.session_state:
st.markdown("\n\n")
st.text_input("Enter the password", type="password", on_change=password_entered, key="password")
st.divider()
st.info("Designed and developed by Milan Mrdenovic © IBM Norway 2024")
return False
elif not st.session_state["password_correct"]:
st.markdown("\n\n")
st.text_input("Enter the password", type="password", on_change=password_entered, key="password")
st.divider()
st.error("😕 Incorrect password")
st.info("Designed and developed by Milan Mrdenovic © IBM Norway 2024")
return False
else:
return True
def initialize_session_state():
if 'chat_history_1' not in st.session_state:
st.session_state.chat_history_1 = []
if 'chat_history_2' not in st.session_state:
st.session_state.chat_history_2 = []
if 'chat_history_3' not in st.session_state:
st.session_state.chat_history_3 = []
if 'first_question' not in st.session_state:
st.session_state.first_question = False
if "counter" not in st.session_state:
st.session_state["counter"] = 0
if 'token_capture' not in st.session_state:
st.session_state.token_capture = []
three_column_style = """
<style>
.stColumn {
padding: 0.5rem;
border-right: 1px solid #dedede;
}
.stColumn:last-child {
border-right: none;
}
.chat-container {
height: calc(100vh - 200px);
overflow-y: auto;
}
</style>
"""
def setup_client(project_id):
credentials = Credentials(
url=st.secrets["url"],
api_key=st.secrets["api_key"]
)
apo = st.secrets["api_key"]
client = APIClient(credentials, project_id=project_id)
return credentials, client
wml_credentials, client = setup_client(st.secrets["project_id"])
def setup_vector_index(client, wml_credentials, vector_index_id):
vector_index_details = client.data_assets.get_details(vector_index_id)
vector_index_properties = vector_index_details["entity"]["vector_index"]
emb = Embeddings(
model_id=vector_index_properties["settings"]["embedding_model_id"],
#model_id="sentence-transformers/all-minilm-l12-v2",
credentials=wml_credentials,
project_id=st.secrets["project_id"],
params={
"truncate_input_tokens": 512
}
)
vector_store_schema = vector_index_properties["settings"]["schema_fields"]
connection_details = client.connections.get_details(vector_index_details["entity"]["vector_index"]["store"]["connection_id"])
connection_properties = connection_details["entity"]["properties"]
milvus_client = MilvusClient(
uri=f'https://{connection_properties.get("host")}:{connection_properties.get("port")}',
user=connection_properties.get("username"),
password=connection_properties.get("password"),
db_name=vector_index_properties["store"]["database"]
)
return milvus_client, emb, vector_index_properties, vector_store_schema
def proximity_search(question, milvus_client, emb, vector_index_properties, vector_store_schema):
query_vectors = emb.embed_query(question)
milvus_response = milvus_client.search(
collection_name=vector_index_properties["store"]["index"],
data=[query_vectors],
limit=vector_index_properties["settings"]["top_k"],
metric_type="L2",
output_fields=[
vector_store_schema.get("text"),
vector_store_schema.get("document_name"),
vector_store_schema.get("page_number")
]
)
documents = []
for hit in milvus_response[0]:
text = hit["entity"].get(vector_store_schema.get("text"), "")
doc_name = hit["entity"].get(vector_store_schema.get("document_name"), "Unknown Document")
page_num = hit["entity"].get(vector_store_schema.get("page_number"), "N/A")
formatted_result = f"Document: {doc_name}\nContent: {text}\nPage: {page_num}\n"
documents.append(formatted_result)
joined = "\n".join(documents)
retrieved = f"""Number of Retrieved Documents: {len(documents)}\n\n{joined}"""
return retrieved
def prepare_prompt(prompt, chat_history):
if genparam.TYPE == "chat" and chat_history:
chats = "\n".join([f"{message['role']}: \"{message['content']}\"" for message in chat_history])
prompt = f"""Retrieved Contextual Information:\n__grounding__\n\nConversation History:\n{chats}\n\nNew User Input: {prompt}"""
return prompt
else:
prompt = f"""Retrieved Contextual Information:\n__grounding__\n\nUser Input: {prompt}"""
return prompt
def apply_prompt_syntax(prompt, system_prompt, prompt_template, bake_in_prompt_syntax):
model_family_syntax = {
"llama3-instruct (llama-3, 3.1 & 3.2) - system": """<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n""",
"llama3-instruct (llama-3, 3.1 & 3.2) - user": """<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n""",
"granite-13b-chat & instruct - system": """<|system|>\n{system_prompt}\n<|user|>\n{prompt}\n<|assistant|>\n\n""",
"granite-13b-chat & instruct - user": """<|user|>\n{prompt}\n<|assistant|>\n\n""",
"mistral & mixtral v2 tokenizer - system": """<s>[INST] System Prompt: {system_prompt} [/INST][INST] {prompt} [/INST]\n\n""",
"mistral & mixtral v2 tokenizer - user": """<s>[INST] {prompt} [/INST]\n\n""",
"no syntax - system": """{system_prompt}\n\n{prompt}""",
"no syntax - user": """{prompt}"""
}
if bake_in_prompt_syntax:
template = model_family_syntax[prompt_template]
if system_prompt:
return template.format(system_prompt=system_prompt, prompt=prompt)
return prompt
def generate_response(watsonx_llm, prompt_data, params):
generated_response = watsonx_llm.generate_text_stream(prompt=prompt_data, params=params)
for chunk in generated_response:
yield chunk
def fetch_response(user_input, milvus_client, emb, vector_index_properties, vector_store_schema, system_prompt, chat_history):
grounding = proximity_search(
question=user_input,
milvus_client=milvus_client,
emb=emb,
vector_index_properties=vector_index_properties,
vector_store_schema=vector_store_schema
)
prompt = prepare_prompt(user_input, chat_history)
prompt_data = apply_prompt_syntax(
prompt,
system_prompt,
genparam.PROMPT_TEMPLATE,
genparam.BAKE_IN_PROMPT_SYNTAX
)
prompt_data = prompt_data.replace("__grounding__", grounding)
watsonx_llm = ModelInference(
api_client=client,
model_id=genparam.SELECTED_MODEL,
verify=genparam.VERIFY
)
params = {
GenParams.DECODING_METHOD: genparam.DECODING_METHOD,
GenParams.MAX_NEW_TOKENS: genparam.MAX_NEW_TOKENS,
GenParams.MIN_NEW_TOKENS: genparam.MIN_NEW_TOKENS,
GenParams.REPETITION_PENALTY: genparam.REPETITION_PENALTY,
GenParams.STOP_SEQUENCES: genparam.STOP_SEQUENCES
}
with st.chat_message("Tribunal", avatar="🥸"):
if genparam.TOKEN_CAPTURE_ENABLED:
st.code(prompt_data, line_numbers=True, wrap_lines=True)
stream = generate_response(watsonx_llm, prompt_data, params)
response = st.write_stream(stream)
# response = st.write_stream(stream, f"<span style='color: {color};'>", unsafe_allow_html=True)
if genparam.TOKEN_CAPTURE_ENABLED:
chat_number = len(chat_history) // 2
token_calculations = capture_tokens(prompt_data, response, chat_number)
if token_calculations:
st.sidebar.code(token_calculations)
return response
def capture_tokens(prompt_data, response, chat_number):
if not genparam.TOKEN_CAPTURE_ENABLED:
return
watsonx_llm = ModelInference(
api_client=client,
model_id=genparam.SELECTED_MODEL,
verify=genparam.VERIFY
)
input_tokens = watsonx_llm.tokenize(prompt=prompt_data)["result"]["token_count"]
output_tokens = watsonx_llm.tokenize(prompt=response)["result"]["token_count"]
total_tokens = input_tokens + output_tokens
st.session_state.token_capture.append(f"chat {chat_number}: {input_tokens} + {output_tokens} = {total_tokens}")
token_calculations = "\n".join(st.session_state.token_capture)
return token_calculations
def main():
initialize_session_state()
# Apply custom styles
#st.markdown(hide_sidebar_style, unsafe_allow_html=True)
st.markdown(three_column_style, unsafe_allow_html=True)
# Sidebar configuration
st.sidebar.header('The Tribunal')
st.sidebar.write('')
st.sidebar.write('')
if not check_password():
st.stop()
# Main chat interface
user_input = st.chat_input("Ask your question here", key="user_input")
if user_input:
# Create three columns
col1, col2, col3 = st.columns(3)
with col1:
st.markdown("<div class='chat-container'>", unsafe_allow_html=True)
st.subheader(genparam.BOT_1_NAME)
# Display chat history for bot 1
for message in st.session_state.chat_history_1:
with st.chat_message(message["role"], avatar="👤" if message["role"] == "user" else "🥸"):
#st.markdown(f"<span style='color: #1565C0;'>{message['content']}</span>", unsafe_allow_html=True)
st.markdown(message['content'])
# Add user message and get bot 1 response
st.session_state.chat_history_1.append({"role": "user", "content": user_input, "avatar":"👤"})
milvus_client, emb, vector_index_properties, vector_store_schema = setup_vector_index(
client,
wml_credentials,
st.secrets["vector_index_id"]
)
system_prompt = genparam.BOT_1_PROMPT
response = fetch_response(
user_input,
milvus_client,
emb,
vector_index_properties,
vector_store_schema,
system_prompt,
st.session_state.chat_history_1
)
st.session_state.chat_history_1.append({"role": "Tribunal", "content": response, "avatar":"🥸"})
st.markdown("</div>", unsafe_allow_html=True)
with col2:
st.markdown("<div class='chat-container'>", unsafe_allow_html=True)
st.subheader(genparam.BOT_2_NAME)
# Display chat history for bot 2
for message in st.session_state.chat_history_2:
with st.chat_message(message["role"], avatar="👤" if message["role"] == "user" else "🥸"):
#st.markdown(f"<span style='color: #2E7D32;'>{message['content']}</span>", unsafe_allow_html=True)
st.markdown(message['content'])
# Add user message and get bot 2 response
st.session_state.chat_history_2.append({"role": "user", "content": user_input, "avatar":"👤"})
milvus_client, emb, vector_index_properties, vector_store_schema = setup_vector_index(
client,
wml_credentials,
st.secrets["vector_index_id"]
)
response = fetch_response(
user_input,
milvus_client,
emb,
vector_index_properties,
vector_store_schema,
genparam.BOT_2_PROMPT,
st.session_state.chat_history_2
)
st.session_state.chat_history_2.append({"role": "Tribunal", "content": response, "avatar":"🥸"})
st.markdown("</div>", unsafe_allow_html=True)
with col3:
st.markdown("<div class='chat-container'>", unsafe_allow_html=True)
st.subheader(genparam.BOT_3_NAME)
# Display chat history for bot 3
for message in st.session_state.chat_history_3:
with st.chat_message(message["role"], avatar="👤" if message["role"] == "user" else "🥸"):
#st.markdown(f"<span style='color: #6A1B9A;'>{message['content']}</span>", unsafe_allow_html=True)
st.markdown(message['content'])
# Add user message and get bot 3 response
st.session_state.chat_history_3.append({"role": "user", "content": user_input, "avatar":"👤"})
milvus_client, emb, vector_index_properties, vector_store_schema = setup_vector_index(
client,
wml_credentials,
st.secrets["vector_index_id"]
)
response = fetch_response(
user_input,
milvus_client,
emb,
vector_index_properties,
vector_store_schema,
genparam.BOT_3_PROMPT,
st.session_state.chat_history_3
)
st.session_state.chat_history_3.append({"role": "Tribunal", "content": response, "avatar":"🥸"})
st.markdown("</div>", unsafe_allow_html=True)
if __name__ == "__main__":
main() |