Update neo_sages5.py
Browse files- neo_sages5.py +408 -589
neo_sages5.py
CHANGED
@@ -1,627 +1,446 @@
|
|
1 |
import streamlit as st
|
2 |
-
from
|
3 |
-
import
|
4 |
-
import
|
5 |
-
import
|
6 |
-
import
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
return
|
55 |
-
|
56 |
-
def
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
#
|
75 |
-
|
76 |
-
#
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
#
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
#
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
.
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
}
|
105 |
-
.chat-messages {
|
106 |
-
display: flex;
|
107 |
-
flex-direction: column;
|
108 |
-
gap: 1rem;
|
109 |
-
}
|
110 |
-
</style>
|
111 |
-
""" # Alt Style
|
112 |
-
|
113 |
-
#-----
|
114 |
-
def get_active_model():
|
115 |
-
return genparam.SELECTED_MODEL_1 if genparam.ACTIVE_MODEL == 0 else genparam.SELECTED_MODEL_2
|
116 |
-
|
117 |
-
def get_active_prompt_template():
|
118 |
-
return genparam.PROMPT_TEMPLATE_1 if genparam.ACTIVE_MODEL == 0 else genparam.PROMPT_TEMPLATE_2
|
119 |
-
|
120 |
-
def get_active_vector_index():
|
121 |
-
selected_kb = st.session_state.selected_kb
|
122 |
-
if genparam.ACTIVE_INDEX == 0:
|
123 |
-
return VECTOR_INDEXES[selected_kb]["index_1"]
|
124 |
-
else:
|
125 |
-
return VECTOR_INDEXES[selected_kb]["index_2"]
|
126 |
-
#-----
|
127 |
|
128 |
-
def
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
default_config = {
|
146 |
-
"api_key": cos_creds.COS_API_KEY,
|
147 |
-
"instance_id": cos_creds.COS_INSTANCE_ID,
|
148 |
-
"endpoint": cos_creds.COS_ENDPOINT,
|
149 |
-
"bucket": cos_creds.BUCKET_NAME
|
150 |
-
}
|
151 |
-
|
152 |
-
# Use provided config or default
|
153 |
-
config = config_dict if config_dict is not None else default_config
|
154 |
-
|
155 |
-
# Initialize the retrieval COS client
|
156 |
-
retrieval_cos_client = ibm_boto3.client(
|
157 |
-
"s3",
|
158 |
-
ibm_api_key_id=config["api_key"],
|
159 |
-
ibm_service_instance_id=config["instance_id"],
|
160 |
-
config=Config(signature_version="oauth"),
|
161 |
-
endpoint_url=config["endpoint"]
|
162 |
-
)
|
163 |
-
|
164 |
-
# Verify the connection by trying to list objects
|
165 |
-
try:
|
166 |
-
retrieval_cos_client.list_objects(Bucket=config["bucket"], MaxKeys=1)
|
167 |
-
print("Retrieval COS client successfully initialized and connected")
|
168 |
-
except Exception as e:
|
169 |
-
print(f"Error verifying retrieval COS client connection: {str(e)}")
|
170 |
-
raise
|
171 |
-
|
172 |
-
return retrieval_cos_client
|
173 |
-
|
174 |
-
retrieval_cos_client = setup_retrieval_cos_client()
|
175 |
-
|
176 |
-
def load_callable_index_config(config_path):
|
177 |
-
try:
|
178 |
-
# Download config file content using retrieval client
|
179 |
-
response = retrieval_cos_client.get_object(Bucket=cos_creds.BUCKET_NAME, Key=config_path)
|
180 |
-
config_content = response['Body'].read().decode('utf-8')
|
181 |
-
return json.loads(config_content)
|
182 |
-
except Exception as e:
|
183 |
-
raise Exception(f"Error loading callable index config: {str(e)}")
|
184 |
-
###==========================================1-2
|
185 |
-
def setup_vector_index(client, wml_credentials, config_path):
|
186 |
-
# Load the configuration using load_callable_index_config
|
187 |
-
config = load_callable_index_config(config_path)
|
188 |
-
|
189 |
-
# Initialize embeddings
|
190 |
-
emb = Embeddings(
|
191 |
-
model_id=config["embedding"]["model_id"],
|
192 |
-
credentials=wml_credentials,
|
193 |
-
project_id=PROJECT_ID,
|
194 |
-
params={
|
195 |
-
"truncate_input_tokens": config["embedding"]["max_tokens"]
|
196 |
}
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
"
|
215 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
},
|
217 |
-
|
218 |
-
"
|
219 |
-
"
|
220 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
}
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
|
227 |
-
|
228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
collection_name=vector_index_properties["store"]["index"],
|
234 |
-
data=[query_vectors],
|
235 |
-
limit=vector_index_properties["settings"]["top_k"],
|
236 |
-
metric_type="L2",
|
237 |
-
output_fields=[
|
238 |
-
schema_fields["text_field"],
|
239 |
-
schema_fields["document_name"],
|
240 |
-
schema_fields["page_number"]
|
241 |
-
]
|
242 |
-
)
|
243 |
-
|
244 |
-
documents = []
|
245 |
|
246 |
-
|
247 |
-
|
248 |
-
doc_name = hit["entity"].get(schema_fields["document_name"], "Unknown Document")
|
249 |
-
page_num = hit["entity"].get(schema_fields["page_number"], "N/A")
|
250 |
-
|
251 |
-
formatted_result = f"Document: {doc_name}\nContent: {text}\nPage: {page_num}\n"
|
252 |
-
documents.append(formatted_result)
|
253 |
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
###==========================================2-3
|
259 |
-
|
260 |
-
def prepare_prompt(prompt, chat_history):
|
261 |
-
if genparam.TYPE == "chat" and chat_history:
|
262 |
-
chats = "\n".join([f"{message['role']}: \"{message['content']}\"" for message in chat_history])
|
263 |
-
prompt = f"""Retrieved Contextual Information:\n__grounding__\n\nConversation History:\n{chats}\n\nNew User Input: {prompt}"""
|
264 |
-
return prompt
|
265 |
else:
|
266 |
-
|
267 |
-
return prompt
|
268 |
-
|
269 |
-
def apply_prompt_syntax(prompt, system_prompt, prompt_template, bake_in_prompt_syntax):
|
270 |
-
model_family_syntax = {
|
271 |
-
"llama3-instruct (llama-3, 3.1 & 3.2) - system": """<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n""",
|
272 |
-
"llama3-instruct (llama-3, 3.1 & 3.2) - user": """<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n""",
|
273 |
-
"granite-13b-chat & instruct - system": """<|system|>\n{system_prompt}\n<|user|>\n{prompt}\n<|assistant|>\n\n""",
|
274 |
-
"granite-13b-chat & instruct - user": """<|user|>\n{prompt}\n<|assistant|>\n\n""",
|
275 |
-
"mistral & mixtral v2 tokenizer - system": """<s>[INST] System Prompt: {system_prompt} [/INST][INST] {prompt} [/INST]\n\n""",
|
276 |
-
"mistral & mixtral v2 tokenizer - user": """<s>[INST] {prompt} [/INST]\n\n""",
|
277 |
-
"no syntax - system": """{system_prompt}\n\n{prompt}""",
|
278 |
-
"no syntax - user": """{prompt}"""
|
279 |
-
}
|
280 |
-
|
281 |
-
if bake_in_prompt_syntax:
|
282 |
-
template = model_family_syntax[prompt_template]
|
283 |
-
if system_prompt:
|
284 |
-
return template.format(system_prompt=system_prompt, prompt=prompt)
|
285 |
-
return prompt
|
286 |
-
|
287 |
-
def generate_response(watsonx_llm, prompt_data, params):
|
288 |
-
generated_response = watsonx_llm.generate_text_stream(prompt=prompt_data, params=params)
|
289 |
-
for chunk in generated_response:
|
290 |
-
yield chunk
|
291 |
-
|
292 |
-
def fetch_response(user_input, milvus_client, emb, vector_props, config, system_prompt, chat_history):
|
293 |
-
# Get grounding documents
|
294 |
-
grounding = proximity_search(
|
295 |
-
question=user_input,
|
296 |
-
milvus_client=milvus_client,
|
297 |
-
emb=emb,
|
298 |
-
vector_props=vector_promps,
|
299 |
-
config=config_path
|
300 |
-
)
|
301 |
-
|
302 |
-
# Special handling for PATH-er B. (first column)
|
303 |
-
if chat_history == st.session_state.chat_history_1:
|
304 |
-
# Display user question first
|
305 |
-
with st.chat_message("user", avatar=genparam.USER_AVATAR):
|
306 |
-
st.markdown(user_input)
|
307 |
-
|
308 |
-
# Parse and display each document from the grounding
|
309 |
-
documents = grounding.split("\n\n")[2:] # Skip the count line and first newline
|
310 |
-
for doc in documents:
|
311 |
-
if doc.strip(): # Only process non-empty strings
|
312 |
-
parts = doc.split("\n")
|
313 |
-
doc_name = parts[0].replace("Document: ", "")
|
314 |
-
content = parts[1].replace("Content: ", "")
|
315 |
-
|
316 |
-
# Display document with delay
|
317 |
-
time.sleep(0.5)
|
318 |
-
st.markdown(f"**{doc_name}**")
|
319 |
-
st.code(content)
|
320 |
-
|
321 |
-
# Store in chat history
|
322 |
-
return grounding
|
323 |
-
|
324 |
-
# For MOD-ther S. (second column) and SYS-ter V. (third column)
|
325 |
-
else:
|
326 |
-
prompt = prepare_prompt(user_input, chat_history)
|
327 |
-
prompt_data = apply_prompt_syntax(
|
328 |
-
prompt,
|
329 |
-
system_prompt, # Using the system_prompt passed to the function
|
330 |
-
get_active_prompt_template(),
|
331 |
-
genparam.BAKE_IN_PROMPT_SYNTAX
|
332 |
-
)
|
333 |
-
prompt_data = prompt_data.replace("__grounding__", grounding)
|
334 |
-
|
335 |
-
# # Add debug information to column 1 if enabled
|
336 |
-
# if genparam.INPUT_DEBUG_VIEW == 1:
|
337 |
-
# with col1: # Access first column
|
338 |
-
# bot_name = genparam.BOT_2_NAME if chat_history == st.session_state.chat_history_2 else genparam.BOT_3_NAME
|
339 |
-
# bot_avatar = genparam.BOT_2_AVATAR if chat_history == st.session_state.chat_history_2 else genparam.BOT_3_AVATAR
|
340 |
-
# st.markdown(f"**{bot_avatar} {bot_name} Prompt Data:**")
|
341 |
-
# st.code(prompt_data, language="text")
|
342 |
-
|
343 |
-
# Continue with normal processing for columns 2 and 3
|
344 |
-
watsonx_llm = ModelInference(
|
345 |
-
api_client=client,
|
346 |
-
model_id=get_active_model(),
|
347 |
-
verify=genparam.VERIFY
|
348 |
-
)
|
349 |
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
|
|
|
|
|
|
|
|
|
|
366 |
else:
|
367 |
-
|
368 |
-
bot_avatar = genparam.BOT_3_AVATAR
|
369 |
-
|
370 |
-
with st.chat_message(bot_name, avatar=bot_avatar):
|
371 |
-
if chat_history != st.session_state.chat_history_1: # Only generate responses for columns 2 and 3
|
372 |
-
stream = generate_response(watsonx_llm, prompt_data, params)
|
373 |
-
response = st.write_stream(stream)
|
374 |
-
|
375 |
-
# Only capture tokens for MOD-ther S. and SYS-ter V.
|
376 |
-
if genparam.TOKEN_CAPTURE_ENABLED and chat_history != st.session_state.chat_history_1:
|
377 |
-
token_stats = capture_tokens(prompt_data, response, bot_name)
|
378 |
-
if token_stats:
|
379 |
-
st.session_state.token_statistics.append(token_stats)
|
380 |
-
else:
|
381 |
-
response = grounding # For column 1, we already displayed the content
|
382 |
-
|
383 |
-
return response
|
384 |
-
|
385 |
-
def capture_tokens(prompt_data, response, chat_number):
|
386 |
-
if not genparam.TOKEN_CAPTURE_ENABLED:
|
387 |
-
return
|
388 |
-
|
389 |
-
watsonx_llm = ModelInference(
|
390 |
-
api_client=client,
|
391 |
-
model_id=genparam.SELECTED_MODEL,
|
392 |
-
verify=genparam.VERIFY
|
393 |
-
)
|
394 |
-
|
395 |
-
input_tokens = watsonx_llm.tokenize(prompt=prompt_data)["result"]["token_count"]
|
396 |
-
output_tokens = watsonx_llm.tokenize(prompt=response)["result"]["token_count"]
|
397 |
-
total_tokens = input_tokens + output_tokens
|
398 |
-
|
399 |
-
return {
|
400 |
-
"bot_name": bot_name,
|
401 |
-
"input_tokens": input_tokens,
|
402 |
-
"output_tokens": output_tokens,
|
403 |
-
"total_tokens": total_tokens,
|
404 |
-
"timestamp": time.strftime("%H:%M:%S")
|
405 |
-
}
|
406 |
|
407 |
def main():
|
|
|
408 |
initialize_session_state()
|
409 |
-
|
410 |
-
# Apply custom styles
|
411 |
-
st.markdown(three_column_style, unsafe_allow_html=True)
|
412 |
|
413 |
-
# Sidebar
|
414 |
-
st.sidebar.header('
|
415 |
st.sidebar.divider()
|
416 |
|
417 |
-
#
|
418 |
-
|
419 |
-
"Select
|
420 |
-
|
421 |
-
index=
|
422 |
)
|
423 |
|
424 |
-
# Update
|
425 |
-
if
|
426 |
-
st.session_state.
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
|
431 |
-
# Display
|
432 |
-
with st.sidebar.expander("
|
433 |
-
for
|
434 |
-
st.write(f"
|
435 |
|
436 |
-
#
|
437 |
-
st.sidebar.
|
438 |
-
|
439 |
-
|
440 |
-
|
|
|
441 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
442 |
st.sidebar.divider()
|
|
|
|
|
|
|
|
|
443 |
|
444 |
-
#
|
445 |
-
st.
|
446 |
|
447 |
-
#
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
|
453 |
-
#
|
454 |
-
for
|
455 |
-
|
456 |
-
|
457 |
-
|
|
|
|
|
|
|
458 |
|
459 |
-
# Display
|
460 |
-
|
461 |
-
|
462 |
-
st.
|
463 |
-
|
464 |
-
# Calculate total tokens for this interaction
|
465 |
-
total_input = sum(stat['input_tokens'] for stat in stats)
|
466 |
-
total_output = sum(stat['output_tokens'] for stat in stats)
|
467 |
-
total = total_input + total_output
|
468 |
-
|
469 |
-
# Display individual bot statistics
|
470 |
-
for stat in stats:
|
471 |
-
st.sidebar.markdown(
|
472 |
-
f"_{stat['bot_name']}_ \n"
|
473 |
-
f"Input: {stat['input_tokens']} tokens \n"
|
474 |
-
f"Output: {stat['output_tokens']} tokens \n"
|
475 |
-
f"Total: {stat['total_tokens']} tokens"
|
476 |
-
)
|
477 |
-
|
478 |
-
# Display interaction totals
|
479 |
-
st.sidebar.markdown("**Interaction Totals:**")
|
480 |
-
st.sidebar.markdown(
|
481 |
-
f"Total Input: {total_input} tokens \n"
|
482 |
-
f"Total Output: {total_output} tokens \n"
|
483 |
-
f"Total Usage: {total} tokens"
|
484 |
-
)
|
485 |
-
st.sidebar.markdown("---")
|
486 |
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
st.
|
491 |
-
|
492 |
-
|
493 |
-
|
|
|
|
|
|
|
|
|
494 |
|
495 |
-
|
496 |
-
|
497 |
-
|
|
|
|
|
|
|
498 |
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
# Display previous messages
|
506 |
-
for message in st.session_state.chat_history_1:
|
507 |
-
if message["role"] == "user":
|
508 |
-
with st.chat_message(message["role"], avatar=genparam.USER_AVATAR):
|
509 |
-
st.markdown(message['content'])
|
510 |
-
else:
|
511 |
-
# Parse and display stored documents
|
512 |
-
documents = message['content'].split("\n\n")[2:] # Skip count line
|
513 |
-
for doc in documents:
|
514 |
-
if doc.strip():
|
515 |
-
parts = doc.split("\n")
|
516 |
-
doc_name = parts[0].replace("Document: ", "")
|
517 |
-
content = parts[1].replace("Content: ", "")
|
518 |
-
st.markdown(f"**{doc_name}**")
|
519 |
-
st.code(content)
|
520 |
-
|
521 |
-
# Add user message and get new response
|
522 |
-
st.session_state.chat_history_1.append({"role": "user", "content": user_input, "avatar": genparam.USER_AVATAR})
|
523 |
-
milvus_client, emb, vector_index_properties, vector_store_schema = setup_vector_index(
|
524 |
-
client,
|
525 |
-
wml_credentials,
|
526 |
-
VECTOR_INDEXES[st.session_state.selected_kb]["index_1"]
|
527 |
)
|
528 |
-
system_prompt = genparam.BOT_1_PROMPT
|
529 |
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
system_prompt,
|
537 |
-
st.session_state.chat_history_1
|
538 |
)
|
539 |
-
st.session_state.chat_history_1.append({"role": genparam.BOT_1_NAME, "content": response, "avatar": genparam.BOT_1_AVATAR})
|
540 |
-
st.markdown("</div></div>", unsafe_allow_html=True)
|
541 |
-
|
542 |
-
# Second column - MOD-ther S. (Uses documents from first vector index)
|
543 |
-
with col2:
|
544 |
-
st.markdown("<div class='chat-container'>", unsafe_allow_html=True)
|
545 |
-
st.subheader(f"{genparam.BOT_2_AVATAR} {genparam.BOT_2_NAME}")
|
546 |
-
st.markdown("<div class='chat-messages'>", unsafe_allow_html=True)
|
547 |
-
|
548 |
-
for message in st.session_state.chat_history_2:
|
549 |
-
if message["role"] != "user":
|
550 |
-
with st.chat_message(message["role"], avatar=genparam.BOT_2_AVATAR):
|
551 |
-
st.markdown(message['content'])
|
552 |
-
|
553 |
-
st.session_state.chat_history_2.append({"role": "user", "content": user_input, "avatar": genparam.USER_AVATAR})
|
554 |
-
milvus_client, emb, vector_index_properties, vector_store_schema = setup_vector_index(
|
555 |
-
client,
|
556 |
-
wml_credentials,
|
557 |
-
#VECTOR_INDEXES[st.session_state.selected_kb]["index_1"]
|
558 |
-
config_path
|
559 |
-
)
|
560 |
-
system_prompt = SYSTEM_PROMPTS[st.session_state.selected_kb]["bot_2"]
|
561 |
-
|
562 |
-
response = fetch_response(
|
563 |
-
user_input,
|
564 |
-
milvus_client,
|
565 |
-
emb,
|
566 |
-
vector_index_properties,
|
567 |
-
vector_store_schema,
|
568 |
-
system_prompt,
|
569 |
-
st.session_state.chat_history_2
|
570 |
-
)
|
571 |
-
|
572 |
-
if genparam.INPUT_DEBUG_VIEW == 1:
|
573 |
-
with col1: # Access first column
|
574 |
-
bot_name = genparam.BOT_2_NAME if st.session_state.chat_history_1 == st.session_state.chat_history_2 else genparam.BOT_3_NAME
|
575 |
-
bot_avatar = genparam.BOT_2_AVATAR if st.session_state.chat_history_1 == st.session_state.chat_history_2 else genparam.BOT_3_AVATAR
|
576 |
-
st.markdown(f"**{bot_avatar} {bot_name} Prompt Data:**")
|
577 |
-
st.code(prompt_data, language="text")
|
578 |
-
|
579 |
-
st.session_state.chat_history_2.append({"role": genparam.BOT_2_NAME, "content": response, "avatar": genparam.BOT_2_AVATAR})
|
580 |
-
st.markdown("</div></div>", unsafe_allow_html=True)
|
581 |
-
|
582 |
-
# Third column - SYS-ter V. (Uses second vector index and chat history from second column)
|
583 |
-
with col3:
|
584 |
-
st.markdown("<div class='chat-container'>", unsafe_allow_html=True)
|
585 |
-
st.subheader(f"{genparam.BOT_3_AVATAR} {genparam.BOT_3_NAME}")
|
586 |
-
st.markdown("<div class='chat-messages'>", unsafe_allow_html=True)
|
587 |
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
)
|
599 |
-
system_prompt = SYSTEM_PROMPTS[st.session_state.selected_kb]["bot_3"]
|
600 |
-
|
601 |
-
response = fetch_response(
|
602 |
-
user_input,
|
603 |
-
milvus_client,
|
604 |
-
emb,
|
605 |
-
vector_index_properties,
|
606 |
-
vector_store_schema,
|
607 |
-
system_prompt,
|
608 |
-
st.session_state.chat_history_3
|
609 |
-
)
|
610 |
-
|
611 |
-
if genparam.INPUT_DEBUG_VIEW == 1:
|
612 |
-
with col1: # Access first column
|
613 |
-
bot_name = genparam.BOT_2_NAME if st.session_state.chat_history_1 == st.session_state.chat_history_2 else genparam.BOT_3_NAME
|
614 |
-
bot_avatar = genparam.BOT_2_AVATAR if st.session_state.chat_history_1 == st.session_state.chat_history_2 else genparam.BOT_3_AVATAR
|
615 |
-
st.markdown(f"**{bot_avatar} {bot_name} Prompt Data:**")
|
616 |
-
st.code(prompt_data, language="text")
|
617 |
-
|
618 |
-
st.session_state.chat_history_3.append({"role": genparam.BOT_3_NAME, "content": response, "avatar": genparam.BOT_3_AVATAR})
|
619 |
-
st.markdown("</div></div>", unsafe_allow_html=True)
|
620 |
-
|
621 |
-
# Update sidebar with new question
|
622 |
-
st.sidebar.markdown("---")
|
623 |
-
st.sidebar.markdown("**Latest Question:**")
|
624 |
-
st.sidebar.markdown(f"_{user_input}_")
|
625 |
|
626 |
if __name__ == "__main__":
|
627 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
+
from langchain import PromptTemplate
|
3 |
+
from typing import TypedDict, List, Dict, Optional
|
4 |
+
from langchain.graphs import StateGraph
|
5 |
+
from dataclasses import dataclass, field
|
6 |
+
import random
|
7 |
+
|
8 |
+
# Data Structures
|
9 |
+
@dataclass
|
10 |
+
class StoryState:
|
11 |
+
current_step: int = 0
|
12 |
+
max_steps: int = 5
|
13 |
+
story_log: List[str] = field(default_factory=list)
|
14 |
+
user_inputs: List[str] = field(default_factory=list)
|
15 |
+
character1_responses: List[str] = field(default_factory=list)
|
16 |
+
character2_responses: List[str] = field(default_factory=list)
|
17 |
+
story_outcome: Optional[str] = None
|
18 |
+
|
19 |
+
class MicroStory(TypedDict):
|
20 |
+
title: str
|
21 |
+
initial_setup: str
|
22 |
+
character1_name: str
|
23 |
+
character2_name: str
|
24 |
+
steps: List[str]
|
25 |
+
success_conditions: List[str]
|
26 |
+
failure_conditions: List[str]
|
27 |
+
|
28 |
+
from langchain.graphs import StateGraph
|
29 |
+
from typing import Dict, List, Any
|
30 |
+
from dataclasses import dataclass
|
31 |
+
from enum import Enum
|
32 |
+
|
33 |
+
class StoryNodeType(Enum):
|
34 |
+
SETUP = "setup"
|
35 |
+
USER_INPUT = "user_input"
|
36 |
+
CHARACTER1_RESPONSE = "character1_response"
|
37 |
+
CHARACTER2_RESPONSE = "character2_response"
|
38 |
+
EVALUATION = "evaluation"
|
39 |
+
|
40 |
+
@dataclass
|
41 |
+
class StoryGraphState:
|
42 |
+
current_node: StoryNodeType
|
43 |
+
story_data: Dict[str, Any]
|
44 |
+
accumulated_context: List[Dict[str, str]]
|
45 |
+
step_count: int = 0
|
46 |
+
|
47 |
+
def create_story_graph() -> StateGraph:
|
48 |
+
"""Creates the state graph for story progression"""
|
49 |
+
graph = StateGraph()
|
50 |
+
|
51 |
+
# Define state transitions
|
52 |
+
def setup_to_user_input(state: StoryGraphState) -> StoryGraphState:
|
53 |
+
state.current_node = StoryNodeType.USER_INPUT
|
54 |
+
return state
|
55 |
+
|
56 |
+
def user_input_to_char1(state: StoryGraphState, user_input: str) -> StoryGraphState:
|
57 |
+
state.current_node = StoryNodeType.CHARACTER1_RESPONSE
|
58 |
+
state.accumulated_context.append({"role": "user", "content": user_input})
|
59 |
+
return state
|
60 |
+
|
61 |
+
def char1_to_char2(state: StoryGraphState, char1_response: str) -> StoryGraphState:
|
62 |
+
state.current_node = StoryNodeType.CHARACTER2_RESPONSE
|
63 |
+
state.accumulated_context.append({"role": "character1", "content": char1_response})
|
64 |
+
return state
|
65 |
+
|
66 |
+
def char2_to_evaluation(state: StoryGraphState, char2_response: str) -> StoryGraphState:
|
67 |
+
state.current_node = StoryNodeType.EVALUATION
|
68 |
+
state.accumulated_context.append({"role": "character2", "content": char2_response})
|
69 |
+
state.step_count += 1
|
70 |
+
return state
|
71 |
+
|
72 |
+
def evaluation_to_next(state: StoryGraphState) -> StoryGraphState:
|
73 |
+
if state.step_count >= 5:
|
74 |
+
# Story is complete, stay in evaluation
|
75 |
+
return state
|
76 |
+
# Move to next user input
|
77 |
+
state.current_node = StoryNodeType.USER_INPUT
|
78 |
+
return state
|
79 |
+
|
80 |
+
# Add nodes and edges
|
81 |
+
graph.add_node("setup", setup_to_user_input)
|
82 |
+
graph.add_node("user_input", user_input_to_char1)
|
83 |
+
graph.add_node("character1_response", char1_to_char2)
|
84 |
+
graph.add_node("character2_response", char2_to_evaluation)
|
85 |
+
graph.add_node("evaluation", evaluation_to_next)
|
86 |
+
|
87 |
+
# Connect nodes
|
88 |
+
graph.add_edge("setup", "user_input")
|
89 |
+
graph.add_edge("user_input", "character1_response")
|
90 |
+
graph.add_edge("character1_response", "character2_response")
|
91 |
+
graph.add_edge("character2_response", "evaluation")
|
92 |
+
graph.add_edge("evaluation", "user_input")
|
93 |
+
|
94 |
+
return graph
|
95 |
+
|
96 |
+
class StoryRunner:
|
97 |
+
def __init__(self, story_data: Dict[str, Any]):
|
98 |
+
self.graph = create_story_graph()
|
99 |
+
self.state = StoryGraphState(
|
100 |
+
current_node=StoryNodeType.SETUP,
|
101 |
+
story_data=story_data,
|
102 |
+
accumulated_context=[]
|
103 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
+
def process_user_input(self, user_input: str) -> Dict[str, Any]:
|
106 |
+
"""Process user input and advance the story state"""
|
107 |
+
if self.state.current_node != StoryNodeType.USER_INPUT:
|
108 |
+
raise ValueError("Not ready for user input")
|
109 |
+
|
110 |
+
# Advance through the graph
|
111 |
+
self.state = self.graph.transition("user_input", self.state, user_input)
|
112 |
+
self.state = self.graph.transition("character1_response", self.state, None)
|
113 |
+
self.state = self.graph.transition("character2_response", self.state, None)
|
114 |
+
self.state = self.graph.transition("evaluation", self.state, None)
|
115 |
+
|
116 |
+
# Return current state info
|
117 |
+
return {
|
118 |
+
"step_count": self.state.step_count,
|
119 |
+
"is_complete": self.state.step_count >= 5,
|
120 |
+
"current_context": self.state.accumulated_context[-3:] if self.state.accumulated_context else [],
|
121 |
+
"current_node": self.state.current_node.value
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
}
|
123 |
+
|
124 |
+
def get_full_context(self) -> List[Dict[str, str]]:
|
125 |
+
"""Get the full conversation context"""
|
126 |
+
return self.state.accumulated_context
|
127 |
+
|
128 |
+
def is_complete(self) -> bool:
|
129 |
+
"""Check if the story is complete"""
|
130 |
+
return self.state.step_count >= 5
|
131 |
+
|
132 |
+
# Sample Stories Database
|
133 |
+
# Story Categories and Templates
|
134 |
+
STORY_CATEGORIES = {
|
135 |
+
"Mystery": [
|
136 |
+
{
|
137 |
+
"title": "The Library Mystery",
|
138 |
+
"initial_setup": "In the ancient library of St. Bartholomew's, a rare manuscript has gone missing.",
|
139 |
+
"character1_name": "Detective Nash",
|
140 |
+
"character2_name": "Librarian Wells",
|
141 |
+
"steps": [
|
142 |
+
"You notice strange symbols carved into the reading desk",
|
143 |
+
"A student mentions seeing someone in medieval clothing",
|
144 |
+
"The manuscript tracking system shows impossible timestamps",
|
145 |
+
"Temperature drops significantly in the rare books section",
|
146 |
+
"You find a hidden door behind the card catalog"
|
147 |
+
],
|
148 |
+
"success_conditions": [
|
149 |
+
"mentioned checking the security cameras",
|
150 |
+
"investigated the symbols",
|
151 |
+
"questioned the student further",
|
152 |
+
"connected medieval sighting with timestamps"
|
153 |
+
],
|
154 |
+
"failure_conditions": [
|
155 |
+
"accused the librarian",
|
156 |
+
"ignored the symbols",
|
157 |
+
"left the library",
|
158 |
+
"called the police immediately"
|
159 |
+
]
|
160 |
},
|
161 |
+
{
|
162 |
+
"title": "The Digital Deception",
|
163 |
+
"initial_setup": "A tech startup's revolutionary AI algorithm has been stolen right before a major demo.",
|
164 |
+
"character1_name": "Cyber Detective Chen",
|
165 |
+
"character2_name": "System Admin Rodriguez",
|
166 |
+
"steps": [
|
167 |
+
"The server logs show multiple failed login attempts",
|
168 |
+
"An employee reports receiving a suspicious email",
|
169 |
+
"The backup system was manually disabled",
|
170 |
+
"Strange network traffic appears during off-hours",
|
171 |
+
"A hidden backdoor program is discovered"
|
172 |
+
],
|
173 |
+
"success_conditions": [
|
174 |
+
"checked email headers",
|
175 |
+
"analyzed network logs",
|
176 |
+
"investigated backup system",
|
177 |
+
"traced the backdoor"
|
178 |
+
],
|
179 |
+
"failure_conditions": [
|
180 |
+
"restored from backup immediately",
|
181 |
+
"ignored the suspicious email",
|
182 |
+
"reset all passwords without investigation",
|
183 |
+
"blamed the system admin"
|
184 |
+
]
|
185 |
}
|
186 |
+
],
|
187 |
+
"Adventure": [
|
188 |
+
{
|
189 |
+
"title": "The Lost Temple",
|
190 |
+
"initial_setup": "Deep in the Amazon rainforest, you've discovered the entrance to an ancient temple.",
|
191 |
+
"character1_name": "Dr. Rivera",
|
192 |
+
"character2_name": "Guide Santos",
|
193 |
+
"steps": [
|
194 |
+
"Ancient markings warn of a curse",
|
195 |
+
"You find a mechanism with multiple levers",
|
196 |
+
"A strange humming sound emanates from deeper within",
|
197 |
+
"The floor tiles show a peculiar pattern",
|
198 |
+
"A beam of light reveals a hidden chamber"
|
199 |
+
],
|
200 |
+
"success_conditions": [
|
201 |
+
"documented the markings",
|
202 |
+
"observed the pattern",
|
203 |
+
"tested the mechanism carefully",
|
204 |
+
"followed the light beam"
|
205 |
+
],
|
206 |
+
"failure_conditions": [
|
207 |
+
"ignored the warnings",
|
208 |
+
"pulled levers randomly",
|
209 |
+
"split up the group",
|
210 |
+
"took artifacts without examination"
|
211 |
+
]
|
212 |
+
}
|
213 |
+
],
|
214 |
+
"Sci-Fi": [
|
215 |
+
{
|
216 |
+
"title": "The Quantum Anomaly",
|
217 |
+
"initial_setup": "At a cutting-edge research facility, a quantum experiment has created an unexplained phenomenon.",
|
218 |
+
"character1_name": "Dr. Zhang",
|
219 |
+
"character2_name": "Engineer Parker",
|
220 |
+
"steps": [
|
221 |
+
"Quantum readings are off the charts",
|
222 |
+
"Equipment starts behaving erratically",
|
223 |
+
"A shimmer appears in the air",
|
224 |
+
"Time seems to flow differently near the anomaly",
|
225 |
+
"Multiple reality signatures detected"
|
226 |
+
],
|
227 |
+
"success_conditions": [
|
228 |
+
"monitored quantum fluctuations",
|
229 |
+
"calibrated equipment",
|
230 |
+
"documented time discrepancies",
|
231 |
+
"maintained safe distance"
|
232 |
+
],
|
233 |
+
"failure_conditions": [
|
234 |
+
"shut down power immediately",
|
235 |
+
"entered the anomaly",
|
236 |
+
"ignored safety protocols",
|
237 |
+
"attempted to contain without data"
|
238 |
+
]
|
239 |
+
}
|
240 |
+
]
|
241 |
+
}
|
242 |
+
|
243 |
+
# Flatten categories for easy access by title
|
244 |
+
STORY_LOOKUP = {
|
245 |
+
story["title"]: story
|
246 |
+
for category in STORY_CATEGORIES.values()
|
247 |
+
for story in category
|
248 |
+
}
|
249 |
+
|
250 |
+
# Character Response Templates
|
251 |
+
CHARACTER1_TEMPLATE = """
|
252 |
+
Context: You are {character1_name} in this story.
|
253 |
+
Story Progress: {story_log}
|
254 |
+
User's Latest Action: {user_input}
|
255 |
+
|
256 |
+
Respond to the user's action in character, considering:
|
257 |
+
1. Your role and personality
|
258 |
+
2. The current story situation
|
259 |
+
3. The potential consequences of their action
|
260 |
+
|
261 |
+
Response:
|
262 |
+
"""
|
263 |
+
|
264 |
+
CHARACTER2_TEMPLATE = """
|
265 |
+
Context: You are {character2_name} in this story.
|
266 |
+
Story Progress: {story_log}
|
267 |
+
User's Latest Action: {user_input}
|
268 |
+
Other Character's Response: {character1_response}
|
269 |
+
|
270 |
+
Respond to both the user and {character1_name}, considering:
|
271 |
+
1. Your role and personality
|
272 |
+
2. The current story developments
|
273 |
+
3. Your relationship with {character1_name}
|
274 |
+
4. The potential impact on the story's outcome
|
275 |
+
|
276 |
+
Response:
|
277 |
+
"""
|
278 |
|
279 |
+
def initialize_session_state():
|
280 |
+
if 'story_state' not in st.session_state:
|
281 |
+
st.session_state.story_state = StoryState()
|
282 |
+
if 'selected_category' not in st.session_state:
|
283 |
+
st.session_state.selected_category = list(STORY_CATEGORIES.keys())[0]
|
284 |
+
if 'current_story' not in st.session_state:
|
285 |
+
# Select random story from current category
|
286 |
+
st.session_state.current_story = random.choice(STORY_CATEGORIES[st.session_state.selected_category])
|
287 |
+
|
288 |
+
def evaluate_outcome(state: StoryState, story: MicroStory) -> str:
|
289 |
+
user_actions = " ".join(state.user_inputs).lower()
|
290 |
|
291 |
+
# Count matches for success and failure conditions
|
292 |
+
success_matches = sum(1 for cond in story["success_conditions"] if cond.lower() in user_actions)
|
293 |
+
failure_matches = sum(1 for cond in story["failure_conditions"] if cond.lower() in user_actions)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
|
295 |
+
# Calculate success ratio
|
296 |
+
success_ratio = success_matches / len(story["success_conditions"])
|
|
|
|
|
|
|
|
|
|
|
297 |
|
298 |
+
if failure_matches >= 2:
|
299 |
+
return "The story ends in failure. Critical mistakes were made."
|
300 |
+
elif success_ratio >= 0.7:
|
301 |
+
return "The story concludes successfully! Well done!"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
else:
|
303 |
+
return "The story ends with mixed results. Some opportunities were missed."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
|
305 |
+
def update_story_state(state: StoryState, user_input: str, char1_response: str, char2_response: str):
|
306 |
+
state.current_step += 1
|
307 |
+
state.user_inputs.append(user_input)
|
308 |
+
state.character1_responses.append(char1_response)
|
309 |
+
state.character2_responses.append(char2_response)
|
310 |
+
|
311 |
+
# Check if story should end
|
312 |
+
if state.current_step >= state.max_steps:
|
313 |
+
state.story_outcome = evaluate_outcome(state, st.session_state.current_story)
|
314 |
+
|
315 |
+
def generate_character_response(
|
316 |
+
character_name: str,
|
317 |
+
story_log: List[str],
|
318 |
+
user_input: str,
|
319 |
+
other_response: Optional[str] = None,
|
320 |
+
is_character1: bool = True
|
321 |
+
) -> str:
|
322 |
+
# This would normally use watsonx.ai or another LLM
|
323 |
+
# For now, return placeholder responses
|
324 |
+
if is_character1:
|
325 |
+
return f"{character_name}: That's an interesting approach. Let's see where this leads..."
|
326 |
else:
|
327 |
+
return f"{character_name}: I have my doubts about this, but we'll see..."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
328 |
|
329 |
def main():
|
330 |
+
st.set_page_config(page_title="Interactive Story", layout="wide")
|
331 |
initialize_session_state()
|
|
|
|
|
|
|
332 |
|
333 |
+
# Sidebar Configuration
|
334 |
+
st.sidebar.header('Story Selection')
|
335 |
st.sidebar.divider()
|
336 |
|
337 |
+
# Category Selection
|
338 |
+
selected_category = st.sidebar.selectbox(
|
339 |
+
"Select Story Category",
|
340 |
+
list(STORY_CATEGORIES.keys()),
|
341 |
+
index=list(STORY_CATEGORIES.keys()).index(st.session_state.selected_category)
|
342 |
)
|
343 |
|
344 |
+
# Update category and story if changed
|
345 |
+
if selected_category != st.session_state.selected_category:
|
346 |
+
st.session_state.selected_category = selected_category
|
347 |
+
st.session_state.current_story = random.choice(STORY_CATEGORIES[selected_category])
|
348 |
+
st.session_state.story_state = StoryState() # Reset state for new story
|
349 |
+
st.rerun()
|
350 |
|
351 |
+
# Display available stories in category
|
352 |
+
with st.sidebar.expander(f"Available {selected_category} Stories"):
|
353 |
+
for story in STORY_CATEGORIES[selected_category]:
|
354 |
+
st.write(f"📖 {story['title']}")
|
355 |
|
356 |
+
# Optional: Select specific story
|
357 |
+
specific_story = st.sidebar.selectbox(
|
358 |
+
"Select Specific Story",
|
359 |
+
[story["title"] for story in STORY_CATEGORIES[selected_category]],
|
360 |
+
index=[story["title"] for story in STORY_CATEGORIES[selected_category]].index(st.session_state.current_story["title"])
|
361 |
+
)
|
362 |
|
363 |
+
# Update if specific story changed
|
364 |
+
if specific_story != st.session_state.current_story["title"]:
|
365 |
+
st.session_state.current_story = STORY_LOOKUP[specific_story]
|
366 |
+
st.session_state.story_state = StoryState() # Reset state for new story
|
367 |
+
st.rerun()
|
368 |
+
|
369 |
+
# Display story stats
|
370 |
st.sidebar.divider()
|
371 |
+
st.sidebar.subheader("Story Progress")
|
372 |
+
progress = (st.session_state.story_state.current_step / 5) * 100
|
373 |
+
st.sidebar.progress(progress)
|
374 |
+
st.sidebar.write(f"Step {st.session_state.story_state.current_step + 1}/5")
|
375 |
|
376 |
+
# Create three columns
|
377 |
+
col1, col2, col3 = st.columns(3)
|
378 |
|
379 |
+
# Story Progress Column
|
380 |
+
with col1:
|
381 |
+
st.header("Story Progress")
|
382 |
+
st.write(f"**{st.session_state.current_story['title']}**")
|
383 |
+
st.write(st.session_state.current_story['initial_setup'])
|
384 |
|
385 |
+
# Display story log
|
386 |
+
for step_num, (step, user_input) in enumerate(zip(
|
387 |
+
st.session_state.current_story['steps'][:st.session_state.story_state.current_step],
|
388 |
+
st.session_state.story_state.user_inputs
|
389 |
+
)):
|
390 |
+
st.write(f"Step {step_num + 1}: {step}")
|
391 |
+
st.write(f"Your action: {user_input}")
|
392 |
+
st.write("---")
|
393 |
|
394 |
+
# Display current step if story isn't finished
|
395 |
+
if st.session_state.story_state.story_outcome is None:
|
396 |
+
current_step = st.session_state.current_story['steps'][st.session_state.story_state.current_step]
|
397 |
+
st.write(f"Current Situation: {current_step}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
398 |
|
399 |
+
# Character 1 Column
|
400 |
+
with col2:
|
401 |
+
st.header(st.session_state.current_story['character1_name'])
|
402 |
+
for response in st.session_state.story_state.character1_responses:
|
403 |
+
st.write(response)
|
404 |
+
|
405 |
+
# Character 2 Column
|
406 |
+
with col3:
|
407 |
+
st.header(st.session_state.current_story['character2_name'])
|
408 |
+
for response in st.session_state.story_state.character2_responses:
|
409 |
+
st.write(response)
|
410 |
|
411 |
+
# User Input Section
|
412 |
+
if st.session_state.story_state.story_outcome is None:
|
413 |
+
user_input = st.text_input(
|
414 |
+
"What do you do?",
|
415 |
+
key=f"user_input_{st.session_state.story_state.current_step}"
|
416 |
+
)
|
417 |
|
418 |
+
if user_input:
|
419 |
+
# Generate character responses
|
420 |
+
char1_response = generate_character_response(
|
421 |
+
st.session_state.current_story['character1_name'],
|
422 |
+
st.session_state.story_state.story_log,
|
423 |
+
user_input
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
424 |
)
|
|
|
425 |
|
426 |
+
char2_response = generate_character_response(
|
427 |
+
st.session_state.current_story['character2_name'],
|
428 |
+
st.session_state.story_state.story_log,
|
429 |
+
user_input,
|
430 |
+
char1_response,
|
431 |
+
False
|
|
|
|
|
432 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
433 |
|
434 |
+
# Update state
|
435 |
+
update_story_state(st.session_state.story_state, user_input, char1_response, char2_response)
|
436 |
+
st.rerun()
|
437 |
+
else:
|
438 |
+
# Display story outcome
|
439 |
+
st.write(st.session_state.story_state.story_outcome)
|
440 |
+
if st.button("Start New Story"):
|
441 |
+
st.session_state.story_state = StoryState()
|
442 |
+
st.session_state.current_story = random.choice(MICRO_STORIES)
|
443 |
+
st.rerun()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
444 |
|
445 |
if __name__ == "__main__":
|
446 |
main()
|