Create neo_sages2.py
Browse files- neo_sages2.py +529 -0
neo_sages2.py
ADDED
@@ -0,0 +1,529 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from io import BytesIO
|
3 |
+
import ibm_watsonx_ai
|
4 |
+
import secretsload
|
5 |
+
import genparam
|
6 |
+
import requests
|
7 |
+
import time
|
8 |
+
import re
|
9 |
+
import json
|
10 |
+
|
11 |
+
from ibm_watsonx_ai.foundation_models import ModelInference
|
12 |
+
from ibm_watsonx_ai import Credentials, APIClient
|
13 |
+
from ibm_watsonx_ai.metanames import GenTextParamsMetaNames as GenParams
|
14 |
+
from ibm_watsonx_ai.metanames import GenTextReturnOptMetaNames as RetParams
|
15 |
+
|
16 |
+
from ibm_watsonx_ai.foundation_models import Embeddings
|
17 |
+
from ibm_watsonx_ai.foundation_models.utils.enums import EmbeddingTypes
|
18 |
+
from pymilvus import MilvusClient
|
19 |
+
|
20 |
+
from secretsload import load_stsecrets
|
21 |
+
|
22 |
+
credentials = load_stsecrets()
|
23 |
+
|
24 |
+
st.set_page_config(
|
25 |
+
page_title="The Solutioning Sages",
|
26 |
+
page_icon="🪄",
|
27 |
+
initial_sidebar_state="collapsed",
|
28 |
+
layout="wide"
|
29 |
+
)
|
30 |
+
|
31 |
+
# Password protection
|
32 |
+
def check_password():
|
33 |
+
def password_entered():
|
34 |
+
if st.session_state["password"] == st.secrets["app_password"]:
|
35 |
+
st.session_state["password_correct"] = True
|
36 |
+
del st.session_state["password"]
|
37 |
+
else:
|
38 |
+
st.session_state["password_correct"] = False
|
39 |
+
|
40 |
+
if "password_correct" not in st.session_state:
|
41 |
+
st.markdown("\n\n")
|
42 |
+
st.text_input("Enter the password", type="password", on_change=password_entered, key="password")
|
43 |
+
st.divider()
|
44 |
+
st.info("Designed and developed by Milan Mrdenovic © IBM Norway 2024")
|
45 |
+
return False
|
46 |
+
elif not st.session_state["password_correct"]:
|
47 |
+
st.markdown("\n\n")
|
48 |
+
st.text_input("Enter the password", type="password", on_change=password_entered, key="password")
|
49 |
+
st.divider()
|
50 |
+
st.error("😕 Incorrect password")
|
51 |
+
st.info("Designed and developed by Milan Mrdenovic © IBM Norway 2024")
|
52 |
+
return False
|
53 |
+
else:
|
54 |
+
return True
|
55 |
+
|
56 |
+
def initialize_session_state():
|
57 |
+
if 'chat_history_1' not in st.session_state:
|
58 |
+
st.session_state.chat_history_1 = []
|
59 |
+
if 'chat_history_2' not in st.session_state:
|
60 |
+
st.session_state.chat_history_2 = []
|
61 |
+
if 'chat_history_3' not in st.session_state:
|
62 |
+
st.session_state.chat_history_3 = []
|
63 |
+
if 'first_question' not in st.session_state:
|
64 |
+
st.session_state.first_question = False
|
65 |
+
if "counter" not in st.session_state:
|
66 |
+
st.session_state["counter"] = 0
|
67 |
+
if 'token_statistics' not in st.session_state:
|
68 |
+
st.session_state.token_statistics = []
|
69 |
+
|
70 |
+
# three_column_style = """
|
71 |
+
# <style>
|
72 |
+
# .stColumn {
|
73 |
+
# padding: 0.5rem;
|
74 |
+
# border-right: 1px solid #dedede;
|
75 |
+
# }
|
76 |
+
# .stColumn:last-child {
|
77 |
+
# border-right: none;
|
78 |
+
# }
|
79 |
+
# .chat-container {
|
80 |
+
# height: calc(100vh - 200px);
|
81 |
+
# overflow-y: auto;
|
82 |
+
# }
|
83 |
+
# </style>
|
84 |
+
# """
|
85 |
+
|
86 |
+
three_column_style = """
|
87 |
+
<style>
|
88 |
+
.stColumn {
|
89 |
+
padding: 0.5rem;
|
90 |
+
border-right: 1px solid #dedede;
|
91 |
+
}
|
92 |
+
.stColumn:last-child {
|
93 |
+
border-right: none;
|
94 |
+
}
|
95 |
+
.chat-container {
|
96 |
+
height: calc(100vh - 200px);
|
97 |
+
overflow-y: auto;
|
98 |
+
display: flex;
|
99 |
+
flex-direction: column;
|
100 |
+
}
|
101 |
+
.chat-messages {
|
102 |
+
display: flex;
|
103 |
+
flex-direction: column;
|
104 |
+
gap: 1rem;
|
105 |
+
}
|
106 |
+
</style>
|
107 |
+
""" # Alt Style
|
108 |
+
|
109 |
+
#-----
|
110 |
+
def get_active_model():
|
111 |
+
return genparam.SELECTED_MODEL_1 if genparam.ACTIVE_MODEL == 0 else genparam.SELECTED_MODEL_2
|
112 |
+
|
113 |
+
def get_active_prompt_template():
|
114 |
+
return genparam.PROMPT_TEMPLATE_1 if genparam.ACTIVE_MODEL == 0 else genparam.PROMPT_TEMPLATE_2
|
115 |
+
|
116 |
+
def get_active_vector_index():
|
117 |
+
return st.secrets["vector_index_id_1"] if genparam.ACTIVE_INDEX == 0 else st.secrets["vector_index_id_2"]
|
118 |
+
#-----
|
119 |
+
|
120 |
+
def setup_client(project_id):
|
121 |
+
credentials = Credentials(
|
122 |
+
url=st.secrets["url"],
|
123 |
+
api_key=st.secrets["api_key"]
|
124 |
+
)
|
125 |
+
apo = st.secrets["api_key"]
|
126 |
+
client = APIClient(credentials, project_id=project_id)
|
127 |
+
return credentials, client
|
128 |
+
|
129 |
+
wml_credentials, client = setup_client(st.secrets["project_id"])
|
130 |
+
|
131 |
+
def setup_vector_index(client, wml_credentials, vector_index_id):
|
132 |
+
vector_index_details = client.data_assets.get_details(vector_index_id)
|
133 |
+
vector_index_properties = vector_index_details["entity"]["vector_index"]
|
134 |
+
|
135 |
+
emb = Embeddings(
|
136 |
+
model_id=vector_index_properties["settings"]["embedding_model_id"],
|
137 |
+
#model_id="sentence-transformers/all-minilm-l12-v2",
|
138 |
+
credentials=wml_credentials,
|
139 |
+
project_id=st.secrets["project_id"],
|
140 |
+
params={
|
141 |
+
"truncate_input_tokens": 512
|
142 |
+
}
|
143 |
+
)
|
144 |
+
|
145 |
+
vector_store_schema = vector_index_properties["settings"]["schema_fields"]
|
146 |
+
connection_details = client.connections.get_details(vector_index_details["entity"]["vector_index"]["store"]["connection_id"])
|
147 |
+
connection_properties = connection_details["entity"]["properties"]
|
148 |
+
|
149 |
+
milvus_client = MilvusClient(
|
150 |
+
uri=f'https://{connection_properties.get("host")}:{connection_properties.get("port")}',
|
151 |
+
user=connection_properties.get("username"),
|
152 |
+
password=connection_properties.get("password"),
|
153 |
+
db_name=vector_index_properties["store"]["database"]
|
154 |
+
)
|
155 |
+
|
156 |
+
return milvus_client, emb, vector_index_properties, vector_store_schema
|
157 |
+
|
158 |
+
def proximity_search(question, milvus_client, emb, vector_index_properties, vector_store_schema):
|
159 |
+
query_vectors = emb.embed_query(question)
|
160 |
+
milvus_response = milvus_client.search(
|
161 |
+
collection_name=vector_index_properties["store"]["index"],
|
162 |
+
data=[query_vectors],
|
163 |
+
limit=vector_index_properties["settings"]["top_k"],
|
164 |
+
metric_type="L2",
|
165 |
+
output_fields=[
|
166 |
+
vector_store_schema.get("text"),
|
167 |
+
vector_store_schema.get("document_name"),
|
168 |
+
vector_store_schema.get("page_number")
|
169 |
+
]
|
170 |
+
)
|
171 |
+
|
172 |
+
documents = []
|
173 |
+
|
174 |
+
for hit in milvus_response[0]:
|
175 |
+
text = hit["entity"].get(vector_store_schema.get("text"), "")
|
176 |
+
doc_name = hit["entity"].get(vector_store_schema.get("document_name"), "Unknown Document")
|
177 |
+
page_num = hit["entity"].get(vector_store_schema.get("page_number"), "N/A")
|
178 |
+
|
179 |
+
formatted_result = f"Document: {doc_name}\nContent: {text}\nPage: {page_num}\n"
|
180 |
+
documents.append(formatted_result)
|
181 |
+
|
182 |
+
joined = "\n".join(documents)
|
183 |
+
retrieved = f"""Number of Retrieved Documents: {len(documents)}\n\n{joined}"""
|
184 |
+
|
185 |
+
return retrieved
|
186 |
+
|
187 |
+
def prepare_prompt(prompt, chat_history):
|
188 |
+
if genparam.TYPE == "chat" and chat_history:
|
189 |
+
chats = "\n".join([f"{message['role']}: \"{message['content']}\"" for message in chat_history])
|
190 |
+
prompt = f"""Retrieved Contextual Information:\n__grounding__\n\nConversation History:\n{chats}\n\nNew User Input: {prompt}"""
|
191 |
+
return prompt
|
192 |
+
else:
|
193 |
+
prompt = f"""Retrieved Contextual Information:\n__grounding__\n\nUser Input: {prompt}"""
|
194 |
+
return prompt
|
195 |
+
|
196 |
+
def apply_prompt_syntax(prompt, system_prompt, prompt_template, bake_in_prompt_syntax):
|
197 |
+
model_family_syntax = {
|
198 |
+
"llama3-instruct (llama-3, 3.1 & 3.2) - system": """<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n""",
|
199 |
+
"llama3-instruct (llama-3, 3.1 & 3.2) - user": """<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n""",
|
200 |
+
"granite-13b-chat & instruct - system": """<|system|>\n{system_prompt}\n<|user|>\n{prompt}\n<|assistant|>\n\n""",
|
201 |
+
"granite-13b-chat & instruct - user": """<|user|>\n{prompt}\n<|assistant|>\n\n""",
|
202 |
+
"mistral & mixtral v2 tokenizer - system": """<s>[INST] System Prompt: {system_prompt} [/INST][INST] {prompt} [/INST]\n\n""",
|
203 |
+
"mistral & mixtral v2 tokenizer - user": """<s>[INST] {prompt} [/INST]\n\n""",
|
204 |
+
"no syntax - system": """{system_prompt}\n\n{prompt}""",
|
205 |
+
"no syntax - user": """{prompt}"""
|
206 |
+
}
|
207 |
+
|
208 |
+
if bake_in_prompt_syntax:
|
209 |
+
template = model_family_syntax[prompt_template]
|
210 |
+
if system_prompt:
|
211 |
+
return template.format(system_prompt=system_prompt, prompt=prompt)
|
212 |
+
return prompt
|
213 |
+
|
214 |
+
def generate_response(watsonx_llm, prompt_data, params):
|
215 |
+
generated_response = watsonx_llm.generate_text_stream(prompt=prompt_data, params=params)
|
216 |
+
for chunk in generated_response:
|
217 |
+
yield chunk
|
218 |
+
|
219 |
+
def fetch_response(user_input, milvus_client, emb, vector_index_properties, vector_store_schema, system_prompt, chat_history):
|
220 |
+
# Get grounding documents
|
221 |
+
grounding = proximity_search(
|
222 |
+
question=user_input,
|
223 |
+
milvus_client=milvus_client,
|
224 |
+
emb=emb,
|
225 |
+
vector_index_properties=vector_index_properties,
|
226 |
+
vector_store_schema=vector_store_schema
|
227 |
+
)
|
228 |
+
|
229 |
+
# Special handling for PATH-er B. (first column)
|
230 |
+
if chat_history == st.session_state.chat_history_1:
|
231 |
+
# Display user question first
|
232 |
+
with st.chat_message("user", avatar=genparam.USER_AVATAR):
|
233 |
+
st.markdown(user_input)
|
234 |
+
|
235 |
+
# Parse and display each document from the grounding
|
236 |
+
documents = grounding.split("\n\n")[2:] # Skip the count line and first newline
|
237 |
+
for doc in documents:
|
238 |
+
if doc.strip(): # Only process non-empty strings
|
239 |
+
parts = doc.split("\n")
|
240 |
+
doc_name = parts[0].replace("Document: ", "")
|
241 |
+
content = parts[1].replace("Content: ", "")
|
242 |
+
|
243 |
+
# Display document with delay
|
244 |
+
time.sleep(0.5)
|
245 |
+
st.markdown(f"**{doc_name}**")
|
246 |
+
st.code(content)
|
247 |
+
|
248 |
+
# Store in chat history
|
249 |
+
return grounding
|
250 |
+
|
251 |
+
# For MOD-ther S. (second column)
|
252 |
+
elif chat_history == st.session_state.chat_history_2:
|
253 |
+
prompt = prepare_prompt(user_input, chat_history)
|
254 |
+
prompt_data = apply_prompt_syntax(
|
255 |
+
prompt,
|
256 |
+
system_prompt,
|
257 |
+
get_active_prompt_template(),
|
258 |
+
genparam.BAKE_IN_PROMPT_SYNTAX
|
259 |
+
)
|
260 |
+
prompt_data = prompt_data.replace("__grounding__", grounding)
|
261 |
+
|
262 |
+
# Add debug information to column 1 if enabled
|
263 |
+
if genparam.INPUT_DEBUG_VIEW == 1:
|
264 |
+
with st.columns(3)[0]: # Access first column
|
265 |
+
st.markdown(f"**{genparam.BOT_2_AVATAR} {genparam.BOT_2_NAME} Prompt Data:**")
|
266 |
+
st.code(prompt_data, language="text")
|
267 |
+
|
268 |
+
# For SYS-ter V. (third column)
|
269 |
+
else:
|
270 |
+
# Get chat history from MOD-ther S.
|
271 |
+
mod_ther_history = st.session_state.chat_history_2
|
272 |
+
prompt = prepare_prompt(user_input, mod_ther_history)
|
273 |
+
prompt_data = apply_prompt_syntax(
|
274 |
+
prompt,
|
275 |
+
system_prompt,
|
276 |
+
get_active_prompt_template(),
|
277 |
+
genparam.BAKE_IN_PROMPT_SYNTAX
|
278 |
+
)
|
279 |
+
prompt_data = prompt_data.replace("__grounding__", grounding)
|
280 |
+
|
281 |
+
# Add debug information to column 1 if enabled
|
282 |
+
if genparam.INPUT_DEBUG_VIEW == 1:
|
283 |
+
with st.columns(3)[0]: # Access first column
|
284 |
+
st.markdown(f"**{genparam.BOT_3_AVATAR} {genparam.BOT_3_NAME} Prompt Data:**")
|
285 |
+
st.code(prompt_data, language="text")
|
286 |
+
|
287 |
+
# Continue with normal processing for columns 2 and 3
|
288 |
+
watsonx_llm = ModelInference(
|
289 |
+
api_client=client,
|
290 |
+
model_id=get_active_model(),
|
291 |
+
verify=genparam.VERIFY
|
292 |
+
)
|
293 |
+
|
294 |
+
params = {
|
295 |
+
GenParams.DECODING_METHOD: genparam.DECODING_METHOD,
|
296 |
+
GenParams.MAX_NEW_TOKENS: genparam.MAX_NEW_TOKENS,
|
297 |
+
GenParams.MIN_NEW_TOKENS: genparam.MIN_NEW_TOKENS,
|
298 |
+
GenParams.REPETITION_PENALTY: genparam.REPETITION_PENALTY,
|
299 |
+
GenParams.STOP_SEQUENCES: genparam.STOP_SEQUENCES
|
300 |
+
}
|
301 |
+
|
302 |
+
bot_name = None
|
303 |
+
bot_avatar = None
|
304 |
+
if chat_history == st.session_state.chat_history_1:
|
305 |
+
bot_name = genparam.BOT_1_NAME
|
306 |
+
bot_avatar = genparam.BOT_1_AVATAR
|
307 |
+
elif chat_history == st.session_state.chat_history_2:
|
308 |
+
bot_name = genparam.BOT_2_NAME
|
309 |
+
bot_avatar = genparam.BOT_2_AVATAR
|
310 |
+
else:
|
311 |
+
bot_name = genparam.BOT_3_NAME
|
312 |
+
bot_avatar = genparam.BOT_3_AVATAR
|
313 |
+
|
314 |
+
with st.chat_message(bot_name, avatar=bot_avatar):
|
315 |
+
if chat_history != st.session_state.chat_history_1: # Only generate responses for columns 2 and 3
|
316 |
+
stream = generate_response(watsonx_llm, prompt_data, params)
|
317 |
+
response = st.write_stream(stream)
|
318 |
+
|
319 |
+
# Only capture tokens for MOD-ther S. and SYS-ter V.
|
320 |
+
if genparam.TOKEN_CAPTURE_ENABLED and chat_history != st.session_state.chat_history_1:
|
321 |
+
token_stats = capture_tokens(prompt_data, response, bot_name)
|
322 |
+
if token_stats:
|
323 |
+
st.session_state.token_statistics.append(token_stats)
|
324 |
+
else:
|
325 |
+
response = grounding # For column 1, we already displayed the content
|
326 |
+
|
327 |
+
return response
|
328 |
+
|
329 |
+
def capture_tokens(prompt_data, response, chat_number):
|
330 |
+
if not genparam.TOKEN_CAPTURE_ENABLED:
|
331 |
+
return
|
332 |
+
|
333 |
+
watsonx_llm = ModelInference(
|
334 |
+
api_client=client,
|
335 |
+
model_id=genparam.SELECTED_MODEL,
|
336 |
+
verify=genparam.VERIFY
|
337 |
+
)
|
338 |
+
|
339 |
+
input_tokens = watsonx_llm.tokenize(prompt=prompt_data)["result"]["token_count"]
|
340 |
+
output_tokens = watsonx_llm.tokenize(prompt=response)["result"]["token_count"]
|
341 |
+
total_tokens = input_tokens + output_tokens
|
342 |
+
|
343 |
+
return {
|
344 |
+
"bot_name": bot_name,
|
345 |
+
"input_tokens": input_tokens,
|
346 |
+
"output_tokens": output_tokens,
|
347 |
+
"total_tokens": total_tokens,
|
348 |
+
"timestamp": time.strftime("%H:%M:%S")
|
349 |
+
}
|
350 |
+
|
351 |
+
def main():
|
352 |
+
initialize_session_state()
|
353 |
+
|
354 |
+
# Apply custom styles
|
355 |
+
st.markdown(three_column_style, unsafe_allow_html=True)
|
356 |
+
|
357 |
+
# Sidebar configuration
|
358 |
+
st.sidebar.header('The Solutioning Sages')
|
359 |
+
st.sidebar.divider()
|
360 |
+
|
361 |
+
# Display token statistics in sidebar
|
362 |
+
st.sidebar.subheader("Token Usage Statistics")
|
363 |
+
|
364 |
+
# Group token statistics by interaction (for MOD-ther S. and SYS-ter V. only)
|
365 |
+
if st.session_state.token_statistics:
|
366 |
+
current_timestamp = None
|
367 |
+
interaction_count = 0
|
368 |
+
stats_by_time = {}
|
369 |
+
|
370 |
+
# Group stats by timestamp
|
371 |
+
for stat in st.session_state.token_statistics:
|
372 |
+
if stat["timestamp"] not in stats_by_time:
|
373 |
+
stats_by_time[stat["timestamp"]] = []
|
374 |
+
stats_by_time[stat["timestamp"]].append(stat)
|
375 |
+
|
376 |
+
# Display grouped stats
|
377 |
+
for timestamp, stats in stats_by_time.items():
|
378 |
+
interaction_count += 1
|
379 |
+
st.sidebar.markdown(f"**Interaction {interaction_count}** ({timestamp})")
|
380 |
+
|
381 |
+
# Calculate total tokens for this interaction
|
382 |
+
total_input = sum(stat['input_tokens'] for stat in stats)
|
383 |
+
total_output = sum(stat['output_tokens'] for stat in stats)
|
384 |
+
total = total_input + total_output
|
385 |
+
|
386 |
+
# Display individual bot statistics
|
387 |
+
for stat in stats:
|
388 |
+
st.sidebar.markdown(
|
389 |
+
f"_{stat['bot_name']}_ \n"
|
390 |
+
f"Input: {stat['input_tokens']} tokens \n"
|
391 |
+
f"Output: {stat['output_tokens']} tokens \n"
|
392 |
+
f"Total: {stat['total_tokens']} tokens"
|
393 |
+
)
|
394 |
+
|
395 |
+
# Display interaction totals
|
396 |
+
st.sidebar.markdown("**Interaction Totals:**")
|
397 |
+
st.sidebar.markdown(
|
398 |
+
f"Total Input: {total_input} tokens \n"
|
399 |
+
f"Total Output: {total_output} tokens \n"
|
400 |
+
f"Total Usage: {total} tokens"
|
401 |
+
)
|
402 |
+
st.sidebar.markdown("---")
|
403 |
+
|
404 |
+
st.sidebar.markdown("")
|
405 |
+
|
406 |
+
|
407 |
+
if not check_password():
|
408 |
+
st.stop()
|
409 |
+
|
410 |
+
# Get user input before column creation
|
411 |
+
user_input = st.chat_input("Ask your question here", key="user_input")
|
412 |
+
|
413 |
+
if user_input:
|
414 |
+
# Create three columns
|
415 |
+
col1, col2, col3 = st.columns(3)
|
416 |
+
|
417 |
+
# First column - PATH-er B. (Document Display)
|
418 |
+
with col1:
|
419 |
+
st.markdown("<div class='chat-container'>", unsafe_allow_html=True)
|
420 |
+
st.subheader(f"{genparam.BOT_1_AVATAR} {genparam.BOT_1_NAME}")
|
421 |
+
st.markdown("<div class='chat-messages'>", unsafe_allow_html=True)
|
422 |
+
|
423 |
+
# Display previous messages
|
424 |
+
for message in st.session_state.chat_history_1:
|
425 |
+
if message["role"] == "user":
|
426 |
+
with st.chat_message(message["role"], avatar=genparam.USER_AVATAR):
|
427 |
+
st.markdown(message['content'])
|
428 |
+
else:
|
429 |
+
# Parse and display stored documents
|
430 |
+
documents = message['content'].split("\n\n")[2:] # Skip count line
|
431 |
+
for doc in documents:
|
432 |
+
if doc.strip():
|
433 |
+
parts = doc.split("\n")
|
434 |
+
doc_name = parts[0].replace("Document: ", "")
|
435 |
+
content = parts[1].replace("Content: ", "")
|
436 |
+
st.markdown(f"**{doc_name}**")
|
437 |
+
st.code(content)
|
438 |
+
|
439 |
+
# Add user message and get new response
|
440 |
+
st.session_state.chat_history_1.append({"role": "user", "content": user_input, "avatar": genparam.USER_AVATAR})
|
441 |
+
milvus_client, emb, vector_index_properties, vector_store_schema = setup_vector_index(
|
442 |
+
client,
|
443 |
+
wml_credentials,
|
444 |
+
st.secrets["vector_index_id_1"] # Use first vector index
|
445 |
+
)
|
446 |
+
system_prompt = genparam.BOT_1_PROMPT
|
447 |
+
|
448 |
+
response = fetch_response(
|
449 |
+
user_input,
|
450 |
+
milvus_client,
|
451 |
+
emb,
|
452 |
+
vector_index_properties,
|
453 |
+
vector_store_schema,
|
454 |
+
system_prompt,
|
455 |
+
st.session_state.chat_history_1
|
456 |
+
)
|
457 |
+
st.session_state.chat_history_1.append({"role": genparam.BOT_1_NAME, "content": response, "avatar": genparam.BOT_1_AVATAR})
|
458 |
+
st.markdown("</div></div>", unsafe_allow_html=True)
|
459 |
+
|
460 |
+
# Second column - MOD-ther S. (Uses documents from first vector index)
|
461 |
+
with col2:
|
462 |
+
st.markdown("<div class='chat-container'>", unsafe_allow_html=True)
|
463 |
+
st.subheader(f"{genparam.BOT_2_AVATAR} {genparam.BOT_2_NAME}")
|
464 |
+
st.markdown("<div class='chat-messages'>", unsafe_allow_html=True)
|
465 |
+
|
466 |
+
for message in st.session_state.chat_history_2:
|
467 |
+
if message["role"] != "user":
|
468 |
+
with st.chat_message(message["role"], avatar=genparam.BOT_2_AVATAR):
|
469 |
+
st.markdown(message['content'])
|
470 |
+
|
471 |
+
st.session_state.chat_history_2.append({"role": "user", "content": user_input, "avatar": genparam.USER_AVATAR})
|
472 |
+
milvus_client, emb, vector_index_properties, vector_store_schema = setup_vector_index(
|
473 |
+
client,
|
474 |
+
wml_credentials,
|
475 |
+
st.secrets["vector_index_id_1"] # Use first vector index
|
476 |
+
)
|
477 |
+
system_prompt = genparam.BOT_2_PROMPT
|
478 |
+
|
479 |
+
response = fetch_response(
|
480 |
+
user_input,
|
481 |
+
milvus_client,
|
482 |
+
emb,
|
483 |
+
vector_index_properties,
|
484 |
+
vector_store_schema,
|
485 |
+
system_prompt,
|
486 |
+
st.session_state.chat_history_2
|
487 |
+
)
|
488 |
+
st.session_state.chat_history_2.append({"role": genparam.BOT_2_NAME, "content": response, "avatar": genparam.BOT_2_AVATAR})
|
489 |
+
st.markdown("</div></div>", unsafe_allow_html=True)
|
490 |
+
|
491 |
+
# Third column - SYS-ter V. (Uses second vector index and chat history from second column)
|
492 |
+
with col3:
|
493 |
+
st.markdown("<div class='chat-container'>", unsafe_allow_html=True)
|
494 |
+
st.subheader(f"{genparam.BOT_3_AVATAR} {genparam.BOT_3_NAME}")
|
495 |
+
st.markdown("<div class='chat-messages'>", unsafe_allow_html=True)
|
496 |
+
|
497 |
+
for message in st.session_state.chat_history_3:
|
498 |
+
if message["role"] != "user":
|
499 |
+
with st.chat_message(message["role"], avatar=genparam.BOT_3_AVATAR):
|
500 |
+
st.markdown(message['content'])
|
501 |
+
|
502 |
+
st.session_state.chat_history_3.append({"role": "user", "content": user_input, "avatar": genparam.USER_AVATAR})
|
503 |
+
milvus_client, emb, vector_index_properties, vector_store_schema = setup_vector_index(
|
504 |
+
client,
|
505 |
+
wml_credentials,
|
506 |
+
st.secrets["vector_index_id_2"] # Use second vector index
|
507 |
+
)
|
508 |
+
system_prompt = genparam.BOT_3_PROMPT
|
509 |
+
|
510 |
+
response = fetch_response(
|
511 |
+
user_input,
|
512 |
+
milvus_client,
|
513 |
+
emb,
|
514 |
+
vector_index_properties,
|
515 |
+
vector_store_schema,
|
516 |
+
system_prompt,
|
517 |
+
st.session_state.chat_history_3
|
518 |
+
)
|
519 |
+
st.session_state.chat_history_3.append({"role": genparam.BOT_3_NAME, "content": response, "avatar": genparam.BOT_3_AVATAR})
|
520 |
+
st.markdown("</div></div>", unsafe_allow_html=True)
|
521 |
+
|
522 |
+
|
523 |
+
# Update sidebar with new question
|
524 |
+
st.sidebar.markdown("---")
|
525 |
+
st.sidebar.markdown("**Latest Question:**")
|
526 |
+
st.sidebar.markdown(f"_{user_input}_")
|
527 |
+
|
528 |
+
if __name__ == "__main__":
|
529 |
+
main()
|