Create neo_sages2.py
Browse files- neo_sages2.py +529 -0
neo_sages2.py
ADDED
|
@@ -0,0 +1,529 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from io import BytesIO
|
| 3 |
+
import ibm_watsonx_ai
|
| 4 |
+
import secretsload
|
| 5 |
+
import genparam
|
| 6 |
+
import requests
|
| 7 |
+
import time
|
| 8 |
+
import re
|
| 9 |
+
import json
|
| 10 |
+
|
| 11 |
+
from ibm_watsonx_ai.foundation_models import ModelInference
|
| 12 |
+
from ibm_watsonx_ai import Credentials, APIClient
|
| 13 |
+
from ibm_watsonx_ai.metanames import GenTextParamsMetaNames as GenParams
|
| 14 |
+
from ibm_watsonx_ai.metanames import GenTextReturnOptMetaNames as RetParams
|
| 15 |
+
|
| 16 |
+
from ibm_watsonx_ai.foundation_models import Embeddings
|
| 17 |
+
from ibm_watsonx_ai.foundation_models.utils.enums import EmbeddingTypes
|
| 18 |
+
from pymilvus import MilvusClient
|
| 19 |
+
|
| 20 |
+
from secretsload import load_stsecrets
|
| 21 |
+
|
| 22 |
+
credentials = load_stsecrets()
|
| 23 |
+
|
| 24 |
+
st.set_page_config(
|
| 25 |
+
page_title="The Solutioning Sages",
|
| 26 |
+
page_icon="🪄",
|
| 27 |
+
initial_sidebar_state="collapsed",
|
| 28 |
+
layout="wide"
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
# Password protection
|
| 32 |
+
def check_password():
|
| 33 |
+
def password_entered():
|
| 34 |
+
if st.session_state["password"] == st.secrets["app_password"]:
|
| 35 |
+
st.session_state["password_correct"] = True
|
| 36 |
+
del st.session_state["password"]
|
| 37 |
+
else:
|
| 38 |
+
st.session_state["password_correct"] = False
|
| 39 |
+
|
| 40 |
+
if "password_correct" not in st.session_state:
|
| 41 |
+
st.markdown("\n\n")
|
| 42 |
+
st.text_input("Enter the password", type="password", on_change=password_entered, key="password")
|
| 43 |
+
st.divider()
|
| 44 |
+
st.info("Designed and developed by Milan Mrdenovic © IBM Norway 2024")
|
| 45 |
+
return False
|
| 46 |
+
elif not st.session_state["password_correct"]:
|
| 47 |
+
st.markdown("\n\n")
|
| 48 |
+
st.text_input("Enter the password", type="password", on_change=password_entered, key="password")
|
| 49 |
+
st.divider()
|
| 50 |
+
st.error("😕 Incorrect password")
|
| 51 |
+
st.info("Designed and developed by Milan Mrdenovic © IBM Norway 2024")
|
| 52 |
+
return False
|
| 53 |
+
else:
|
| 54 |
+
return True
|
| 55 |
+
|
| 56 |
+
def initialize_session_state():
|
| 57 |
+
if 'chat_history_1' not in st.session_state:
|
| 58 |
+
st.session_state.chat_history_1 = []
|
| 59 |
+
if 'chat_history_2' not in st.session_state:
|
| 60 |
+
st.session_state.chat_history_2 = []
|
| 61 |
+
if 'chat_history_3' not in st.session_state:
|
| 62 |
+
st.session_state.chat_history_3 = []
|
| 63 |
+
if 'first_question' not in st.session_state:
|
| 64 |
+
st.session_state.first_question = False
|
| 65 |
+
if "counter" not in st.session_state:
|
| 66 |
+
st.session_state["counter"] = 0
|
| 67 |
+
if 'token_statistics' not in st.session_state:
|
| 68 |
+
st.session_state.token_statistics = []
|
| 69 |
+
|
| 70 |
+
# three_column_style = """
|
| 71 |
+
# <style>
|
| 72 |
+
# .stColumn {
|
| 73 |
+
# padding: 0.5rem;
|
| 74 |
+
# border-right: 1px solid #dedede;
|
| 75 |
+
# }
|
| 76 |
+
# .stColumn:last-child {
|
| 77 |
+
# border-right: none;
|
| 78 |
+
# }
|
| 79 |
+
# .chat-container {
|
| 80 |
+
# height: calc(100vh - 200px);
|
| 81 |
+
# overflow-y: auto;
|
| 82 |
+
# }
|
| 83 |
+
# </style>
|
| 84 |
+
# """
|
| 85 |
+
|
| 86 |
+
three_column_style = """
|
| 87 |
+
<style>
|
| 88 |
+
.stColumn {
|
| 89 |
+
padding: 0.5rem;
|
| 90 |
+
border-right: 1px solid #dedede;
|
| 91 |
+
}
|
| 92 |
+
.stColumn:last-child {
|
| 93 |
+
border-right: none;
|
| 94 |
+
}
|
| 95 |
+
.chat-container {
|
| 96 |
+
height: calc(100vh - 200px);
|
| 97 |
+
overflow-y: auto;
|
| 98 |
+
display: flex;
|
| 99 |
+
flex-direction: column;
|
| 100 |
+
}
|
| 101 |
+
.chat-messages {
|
| 102 |
+
display: flex;
|
| 103 |
+
flex-direction: column;
|
| 104 |
+
gap: 1rem;
|
| 105 |
+
}
|
| 106 |
+
</style>
|
| 107 |
+
""" # Alt Style
|
| 108 |
+
|
| 109 |
+
#-----
|
| 110 |
+
def get_active_model():
|
| 111 |
+
return genparam.SELECTED_MODEL_1 if genparam.ACTIVE_MODEL == 0 else genparam.SELECTED_MODEL_2
|
| 112 |
+
|
| 113 |
+
def get_active_prompt_template():
|
| 114 |
+
return genparam.PROMPT_TEMPLATE_1 if genparam.ACTIVE_MODEL == 0 else genparam.PROMPT_TEMPLATE_2
|
| 115 |
+
|
| 116 |
+
def get_active_vector_index():
|
| 117 |
+
return st.secrets["vector_index_id_1"] if genparam.ACTIVE_INDEX == 0 else st.secrets["vector_index_id_2"]
|
| 118 |
+
#-----
|
| 119 |
+
|
| 120 |
+
def setup_client(project_id):
|
| 121 |
+
credentials = Credentials(
|
| 122 |
+
url=st.secrets["url"],
|
| 123 |
+
api_key=st.secrets["api_key"]
|
| 124 |
+
)
|
| 125 |
+
apo = st.secrets["api_key"]
|
| 126 |
+
client = APIClient(credentials, project_id=project_id)
|
| 127 |
+
return credentials, client
|
| 128 |
+
|
| 129 |
+
wml_credentials, client = setup_client(st.secrets["project_id"])
|
| 130 |
+
|
| 131 |
+
def setup_vector_index(client, wml_credentials, vector_index_id):
|
| 132 |
+
vector_index_details = client.data_assets.get_details(vector_index_id)
|
| 133 |
+
vector_index_properties = vector_index_details["entity"]["vector_index"]
|
| 134 |
+
|
| 135 |
+
emb = Embeddings(
|
| 136 |
+
model_id=vector_index_properties["settings"]["embedding_model_id"],
|
| 137 |
+
#model_id="sentence-transformers/all-minilm-l12-v2",
|
| 138 |
+
credentials=wml_credentials,
|
| 139 |
+
project_id=st.secrets["project_id"],
|
| 140 |
+
params={
|
| 141 |
+
"truncate_input_tokens": 512
|
| 142 |
+
}
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
vector_store_schema = vector_index_properties["settings"]["schema_fields"]
|
| 146 |
+
connection_details = client.connections.get_details(vector_index_details["entity"]["vector_index"]["store"]["connection_id"])
|
| 147 |
+
connection_properties = connection_details["entity"]["properties"]
|
| 148 |
+
|
| 149 |
+
milvus_client = MilvusClient(
|
| 150 |
+
uri=f'https://{connection_properties.get("host")}:{connection_properties.get("port")}',
|
| 151 |
+
user=connection_properties.get("username"),
|
| 152 |
+
password=connection_properties.get("password"),
|
| 153 |
+
db_name=vector_index_properties["store"]["database"]
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
return milvus_client, emb, vector_index_properties, vector_store_schema
|
| 157 |
+
|
| 158 |
+
def proximity_search(question, milvus_client, emb, vector_index_properties, vector_store_schema):
|
| 159 |
+
query_vectors = emb.embed_query(question)
|
| 160 |
+
milvus_response = milvus_client.search(
|
| 161 |
+
collection_name=vector_index_properties["store"]["index"],
|
| 162 |
+
data=[query_vectors],
|
| 163 |
+
limit=vector_index_properties["settings"]["top_k"],
|
| 164 |
+
metric_type="L2",
|
| 165 |
+
output_fields=[
|
| 166 |
+
vector_store_schema.get("text"),
|
| 167 |
+
vector_store_schema.get("document_name"),
|
| 168 |
+
vector_store_schema.get("page_number")
|
| 169 |
+
]
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
documents = []
|
| 173 |
+
|
| 174 |
+
for hit in milvus_response[0]:
|
| 175 |
+
text = hit["entity"].get(vector_store_schema.get("text"), "")
|
| 176 |
+
doc_name = hit["entity"].get(vector_store_schema.get("document_name"), "Unknown Document")
|
| 177 |
+
page_num = hit["entity"].get(vector_store_schema.get("page_number"), "N/A")
|
| 178 |
+
|
| 179 |
+
formatted_result = f"Document: {doc_name}\nContent: {text}\nPage: {page_num}\n"
|
| 180 |
+
documents.append(formatted_result)
|
| 181 |
+
|
| 182 |
+
joined = "\n".join(documents)
|
| 183 |
+
retrieved = f"""Number of Retrieved Documents: {len(documents)}\n\n{joined}"""
|
| 184 |
+
|
| 185 |
+
return retrieved
|
| 186 |
+
|
| 187 |
+
def prepare_prompt(prompt, chat_history):
|
| 188 |
+
if genparam.TYPE == "chat" and chat_history:
|
| 189 |
+
chats = "\n".join([f"{message['role']}: \"{message['content']}\"" for message in chat_history])
|
| 190 |
+
prompt = f"""Retrieved Contextual Information:\n__grounding__\n\nConversation History:\n{chats}\n\nNew User Input: {prompt}"""
|
| 191 |
+
return prompt
|
| 192 |
+
else:
|
| 193 |
+
prompt = f"""Retrieved Contextual Information:\n__grounding__\n\nUser Input: {prompt}"""
|
| 194 |
+
return prompt
|
| 195 |
+
|
| 196 |
+
def apply_prompt_syntax(prompt, system_prompt, prompt_template, bake_in_prompt_syntax):
|
| 197 |
+
model_family_syntax = {
|
| 198 |
+
"llama3-instruct (llama-3, 3.1 & 3.2) - system": """<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n""",
|
| 199 |
+
"llama3-instruct (llama-3, 3.1 & 3.2) - user": """<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n""",
|
| 200 |
+
"granite-13b-chat & instruct - system": """<|system|>\n{system_prompt}\n<|user|>\n{prompt}\n<|assistant|>\n\n""",
|
| 201 |
+
"granite-13b-chat & instruct - user": """<|user|>\n{prompt}\n<|assistant|>\n\n""",
|
| 202 |
+
"mistral & mixtral v2 tokenizer - system": """<s>[INST] System Prompt: {system_prompt} [/INST][INST] {prompt} [/INST]\n\n""",
|
| 203 |
+
"mistral & mixtral v2 tokenizer - user": """<s>[INST] {prompt} [/INST]\n\n""",
|
| 204 |
+
"no syntax - system": """{system_prompt}\n\n{prompt}""",
|
| 205 |
+
"no syntax - user": """{prompt}"""
|
| 206 |
+
}
|
| 207 |
+
|
| 208 |
+
if bake_in_prompt_syntax:
|
| 209 |
+
template = model_family_syntax[prompt_template]
|
| 210 |
+
if system_prompt:
|
| 211 |
+
return template.format(system_prompt=system_prompt, prompt=prompt)
|
| 212 |
+
return prompt
|
| 213 |
+
|
| 214 |
+
def generate_response(watsonx_llm, prompt_data, params):
|
| 215 |
+
generated_response = watsonx_llm.generate_text_stream(prompt=prompt_data, params=params)
|
| 216 |
+
for chunk in generated_response:
|
| 217 |
+
yield chunk
|
| 218 |
+
|
| 219 |
+
def fetch_response(user_input, milvus_client, emb, vector_index_properties, vector_store_schema, system_prompt, chat_history):
|
| 220 |
+
# Get grounding documents
|
| 221 |
+
grounding = proximity_search(
|
| 222 |
+
question=user_input,
|
| 223 |
+
milvus_client=milvus_client,
|
| 224 |
+
emb=emb,
|
| 225 |
+
vector_index_properties=vector_index_properties,
|
| 226 |
+
vector_store_schema=vector_store_schema
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
# Special handling for PATH-er B. (first column)
|
| 230 |
+
if chat_history == st.session_state.chat_history_1:
|
| 231 |
+
# Display user question first
|
| 232 |
+
with st.chat_message("user", avatar=genparam.USER_AVATAR):
|
| 233 |
+
st.markdown(user_input)
|
| 234 |
+
|
| 235 |
+
# Parse and display each document from the grounding
|
| 236 |
+
documents = grounding.split("\n\n")[2:] # Skip the count line and first newline
|
| 237 |
+
for doc in documents:
|
| 238 |
+
if doc.strip(): # Only process non-empty strings
|
| 239 |
+
parts = doc.split("\n")
|
| 240 |
+
doc_name = parts[0].replace("Document: ", "")
|
| 241 |
+
content = parts[1].replace("Content: ", "")
|
| 242 |
+
|
| 243 |
+
# Display document with delay
|
| 244 |
+
time.sleep(0.5)
|
| 245 |
+
st.markdown(f"**{doc_name}**")
|
| 246 |
+
st.code(content)
|
| 247 |
+
|
| 248 |
+
# Store in chat history
|
| 249 |
+
return grounding
|
| 250 |
+
|
| 251 |
+
# For MOD-ther S. (second column)
|
| 252 |
+
elif chat_history == st.session_state.chat_history_2:
|
| 253 |
+
prompt = prepare_prompt(user_input, chat_history)
|
| 254 |
+
prompt_data = apply_prompt_syntax(
|
| 255 |
+
prompt,
|
| 256 |
+
system_prompt,
|
| 257 |
+
get_active_prompt_template(),
|
| 258 |
+
genparam.BAKE_IN_PROMPT_SYNTAX
|
| 259 |
+
)
|
| 260 |
+
prompt_data = prompt_data.replace("__grounding__", grounding)
|
| 261 |
+
|
| 262 |
+
# Add debug information to column 1 if enabled
|
| 263 |
+
if genparam.INPUT_DEBUG_VIEW == 1:
|
| 264 |
+
with st.columns(3)[0]: # Access first column
|
| 265 |
+
st.markdown(f"**{genparam.BOT_2_AVATAR} {genparam.BOT_2_NAME} Prompt Data:**")
|
| 266 |
+
st.code(prompt_data, language="text")
|
| 267 |
+
|
| 268 |
+
# For SYS-ter V. (third column)
|
| 269 |
+
else:
|
| 270 |
+
# Get chat history from MOD-ther S.
|
| 271 |
+
mod_ther_history = st.session_state.chat_history_2
|
| 272 |
+
prompt = prepare_prompt(user_input, mod_ther_history)
|
| 273 |
+
prompt_data = apply_prompt_syntax(
|
| 274 |
+
prompt,
|
| 275 |
+
system_prompt,
|
| 276 |
+
get_active_prompt_template(),
|
| 277 |
+
genparam.BAKE_IN_PROMPT_SYNTAX
|
| 278 |
+
)
|
| 279 |
+
prompt_data = prompt_data.replace("__grounding__", grounding)
|
| 280 |
+
|
| 281 |
+
# Add debug information to column 1 if enabled
|
| 282 |
+
if genparam.INPUT_DEBUG_VIEW == 1:
|
| 283 |
+
with st.columns(3)[0]: # Access first column
|
| 284 |
+
st.markdown(f"**{genparam.BOT_3_AVATAR} {genparam.BOT_3_NAME} Prompt Data:**")
|
| 285 |
+
st.code(prompt_data, language="text")
|
| 286 |
+
|
| 287 |
+
# Continue with normal processing for columns 2 and 3
|
| 288 |
+
watsonx_llm = ModelInference(
|
| 289 |
+
api_client=client,
|
| 290 |
+
model_id=get_active_model(),
|
| 291 |
+
verify=genparam.VERIFY
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
params = {
|
| 295 |
+
GenParams.DECODING_METHOD: genparam.DECODING_METHOD,
|
| 296 |
+
GenParams.MAX_NEW_TOKENS: genparam.MAX_NEW_TOKENS,
|
| 297 |
+
GenParams.MIN_NEW_TOKENS: genparam.MIN_NEW_TOKENS,
|
| 298 |
+
GenParams.REPETITION_PENALTY: genparam.REPETITION_PENALTY,
|
| 299 |
+
GenParams.STOP_SEQUENCES: genparam.STOP_SEQUENCES
|
| 300 |
+
}
|
| 301 |
+
|
| 302 |
+
bot_name = None
|
| 303 |
+
bot_avatar = None
|
| 304 |
+
if chat_history == st.session_state.chat_history_1:
|
| 305 |
+
bot_name = genparam.BOT_1_NAME
|
| 306 |
+
bot_avatar = genparam.BOT_1_AVATAR
|
| 307 |
+
elif chat_history == st.session_state.chat_history_2:
|
| 308 |
+
bot_name = genparam.BOT_2_NAME
|
| 309 |
+
bot_avatar = genparam.BOT_2_AVATAR
|
| 310 |
+
else:
|
| 311 |
+
bot_name = genparam.BOT_3_NAME
|
| 312 |
+
bot_avatar = genparam.BOT_3_AVATAR
|
| 313 |
+
|
| 314 |
+
with st.chat_message(bot_name, avatar=bot_avatar):
|
| 315 |
+
if chat_history != st.session_state.chat_history_1: # Only generate responses for columns 2 and 3
|
| 316 |
+
stream = generate_response(watsonx_llm, prompt_data, params)
|
| 317 |
+
response = st.write_stream(stream)
|
| 318 |
+
|
| 319 |
+
# Only capture tokens for MOD-ther S. and SYS-ter V.
|
| 320 |
+
if genparam.TOKEN_CAPTURE_ENABLED and chat_history != st.session_state.chat_history_1:
|
| 321 |
+
token_stats = capture_tokens(prompt_data, response, bot_name)
|
| 322 |
+
if token_stats:
|
| 323 |
+
st.session_state.token_statistics.append(token_stats)
|
| 324 |
+
else:
|
| 325 |
+
response = grounding # For column 1, we already displayed the content
|
| 326 |
+
|
| 327 |
+
return response
|
| 328 |
+
|
| 329 |
+
def capture_tokens(prompt_data, response, chat_number):
|
| 330 |
+
if not genparam.TOKEN_CAPTURE_ENABLED:
|
| 331 |
+
return
|
| 332 |
+
|
| 333 |
+
watsonx_llm = ModelInference(
|
| 334 |
+
api_client=client,
|
| 335 |
+
model_id=genparam.SELECTED_MODEL,
|
| 336 |
+
verify=genparam.VERIFY
|
| 337 |
+
)
|
| 338 |
+
|
| 339 |
+
input_tokens = watsonx_llm.tokenize(prompt=prompt_data)["result"]["token_count"]
|
| 340 |
+
output_tokens = watsonx_llm.tokenize(prompt=response)["result"]["token_count"]
|
| 341 |
+
total_tokens = input_tokens + output_tokens
|
| 342 |
+
|
| 343 |
+
return {
|
| 344 |
+
"bot_name": bot_name,
|
| 345 |
+
"input_tokens": input_tokens,
|
| 346 |
+
"output_tokens": output_tokens,
|
| 347 |
+
"total_tokens": total_tokens,
|
| 348 |
+
"timestamp": time.strftime("%H:%M:%S")
|
| 349 |
+
}
|
| 350 |
+
|
| 351 |
+
def main():
|
| 352 |
+
initialize_session_state()
|
| 353 |
+
|
| 354 |
+
# Apply custom styles
|
| 355 |
+
st.markdown(three_column_style, unsafe_allow_html=True)
|
| 356 |
+
|
| 357 |
+
# Sidebar configuration
|
| 358 |
+
st.sidebar.header('The Solutioning Sages')
|
| 359 |
+
st.sidebar.divider()
|
| 360 |
+
|
| 361 |
+
# Display token statistics in sidebar
|
| 362 |
+
st.sidebar.subheader("Token Usage Statistics")
|
| 363 |
+
|
| 364 |
+
# Group token statistics by interaction (for MOD-ther S. and SYS-ter V. only)
|
| 365 |
+
if st.session_state.token_statistics:
|
| 366 |
+
current_timestamp = None
|
| 367 |
+
interaction_count = 0
|
| 368 |
+
stats_by_time = {}
|
| 369 |
+
|
| 370 |
+
# Group stats by timestamp
|
| 371 |
+
for stat in st.session_state.token_statistics:
|
| 372 |
+
if stat["timestamp"] not in stats_by_time:
|
| 373 |
+
stats_by_time[stat["timestamp"]] = []
|
| 374 |
+
stats_by_time[stat["timestamp"]].append(stat)
|
| 375 |
+
|
| 376 |
+
# Display grouped stats
|
| 377 |
+
for timestamp, stats in stats_by_time.items():
|
| 378 |
+
interaction_count += 1
|
| 379 |
+
st.sidebar.markdown(f"**Interaction {interaction_count}** ({timestamp})")
|
| 380 |
+
|
| 381 |
+
# Calculate total tokens for this interaction
|
| 382 |
+
total_input = sum(stat['input_tokens'] for stat in stats)
|
| 383 |
+
total_output = sum(stat['output_tokens'] for stat in stats)
|
| 384 |
+
total = total_input + total_output
|
| 385 |
+
|
| 386 |
+
# Display individual bot statistics
|
| 387 |
+
for stat in stats:
|
| 388 |
+
st.sidebar.markdown(
|
| 389 |
+
f"_{stat['bot_name']}_ \n"
|
| 390 |
+
f"Input: {stat['input_tokens']} tokens \n"
|
| 391 |
+
f"Output: {stat['output_tokens']} tokens \n"
|
| 392 |
+
f"Total: {stat['total_tokens']} tokens"
|
| 393 |
+
)
|
| 394 |
+
|
| 395 |
+
# Display interaction totals
|
| 396 |
+
st.sidebar.markdown("**Interaction Totals:**")
|
| 397 |
+
st.sidebar.markdown(
|
| 398 |
+
f"Total Input: {total_input} tokens \n"
|
| 399 |
+
f"Total Output: {total_output} tokens \n"
|
| 400 |
+
f"Total Usage: {total} tokens"
|
| 401 |
+
)
|
| 402 |
+
st.sidebar.markdown("---")
|
| 403 |
+
|
| 404 |
+
st.sidebar.markdown("")
|
| 405 |
+
|
| 406 |
+
|
| 407 |
+
if not check_password():
|
| 408 |
+
st.stop()
|
| 409 |
+
|
| 410 |
+
# Get user input before column creation
|
| 411 |
+
user_input = st.chat_input("Ask your question here", key="user_input")
|
| 412 |
+
|
| 413 |
+
if user_input:
|
| 414 |
+
# Create three columns
|
| 415 |
+
col1, col2, col3 = st.columns(3)
|
| 416 |
+
|
| 417 |
+
# First column - PATH-er B. (Document Display)
|
| 418 |
+
with col1:
|
| 419 |
+
st.markdown("<div class='chat-container'>", unsafe_allow_html=True)
|
| 420 |
+
st.subheader(f"{genparam.BOT_1_AVATAR} {genparam.BOT_1_NAME}")
|
| 421 |
+
st.markdown("<div class='chat-messages'>", unsafe_allow_html=True)
|
| 422 |
+
|
| 423 |
+
# Display previous messages
|
| 424 |
+
for message in st.session_state.chat_history_1:
|
| 425 |
+
if message["role"] == "user":
|
| 426 |
+
with st.chat_message(message["role"], avatar=genparam.USER_AVATAR):
|
| 427 |
+
st.markdown(message['content'])
|
| 428 |
+
else:
|
| 429 |
+
# Parse and display stored documents
|
| 430 |
+
documents = message['content'].split("\n\n")[2:] # Skip count line
|
| 431 |
+
for doc in documents:
|
| 432 |
+
if doc.strip():
|
| 433 |
+
parts = doc.split("\n")
|
| 434 |
+
doc_name = parts[0].replace("Document: ", "")
|
| 435 |
+
content = parts[1].replace("Content: ", "")
|
| 436 |
+
st.markdown(f"**{doc_name}**")
|
| 437 |
+
st.code(content)
|
| 438 |
+
|
| 439 |
+
# Add user message and get new response
|
| 440 |
+
st.session_state.chat_history_1.append({"role": "user", "content": user_input, "avatar": genparam.USER_AVATAR})
|
| 441 |
+
milvus_client, emb, vector_index_properties, vector_store_schema = setup_vector_index(
|
| 442 |
+
client,
|
| 443 |
+
wml_credentials,
|
| 444 |
+
st.secrets["vector_index_id_1"] # Use first vector index
|
| 445 |
+
)
|
| 446 |
+
system_prompt = genparam.BOT_1_PROMPT
|
| 447 |
+
|
| 448 |
+
response = fetch_response(
|
| 449 |
+
user_input,
|
| 450 |
+
milvus_client,
|
| 451 |
+
emb,
|
| 452 |
+
vector_index_properties,
|
| 453 |
+
vector_store_schema,
|
| 454 |
+
system_prompt,
|
| 455 |
+
st.session_state.chat_history_1
|
| 456 |
+
)
|
| 457 |
+
st.session_state.chat_history_1.append({"role": genparam.BOT_1_NAME, "content": response, "avatar": genparam.BOT_1_AVATAR})
|
| 458 |
+
st.markdown("</div></div>", unsafe_allow_html=True)
|
| 459 |
+
|
| 460 |
+
# Second column - MOD-ther S. (Uses documents from first vector index)
|
| 461 |
+
with col2:
|
| 462 |
+
st.markdown("<div class='chat-container'>", unsafe_allow_html=True)
|
| 463 |
+
st.subheader(f"{genparam.BOT_2_AVATAR} {genparam.BOT_2_NAME}")
|
| 464 |
+
st.markdown("<div class='chat-messages'>", unsafe_allow_html=True)
|
| 465 |
+
|
| 466 |
+
for message in st.session_state.chat_history_2:
|
| 467 |
+
if message["role"] != "user":
|
| 468 |
+
with st.chat_message(message["role"], avatar=genparam.BOT_2_AVATAR):
|
| 469 |
+
st.markdown(message['content'])
|
| 470 |
+
|
| 471 |
+
st.session_state.chat_history_2.append({"role": "user", "content": user_input, "avatar": genparam.USER_AVATAR})
|
| 472 |
+
milvus_client, emb, vector_index_properties, vector_store_schema = setup_vector_index(
|
| 473 |
+
client,
|
| 474 |
+
wml_credentials,
|
| 475 |
+
st.secrets["vector_index_id_1"] # Use first vector index
|
| 476 |
+
)
|
| 477 |
+
system_prompt = genparam.BOT_2_PROMPT
|
| 478 |
+
|
| 479 |
+
response = fetch_response(
|
| 480 |
+
user_input,
|
| 481 |
+
milvus_client,
|
| 482 |
+
emb,
|
| 483 |
+
vector_index_properties,
|
| 484 |
+
vector_store_schema,
|
| 485 |
+
system_prompt,
|
| 486 |
+
st.session_state.chat_history_2
|
| 487 |
+
)
|
| 488 |
+
st.session_state.chat_history_2.append({"role": genparam.BOT_2_NAME, "content": response, "avatar": genparam.BOT_2_AVATAR})
|
| 489 |
+
st.markdown("</div></div>", unsafe_allow_html=True)
|
| 490 |
+
|
| 491 |
+
# Third column - SYS-ter V. (Uses second vector index and chat history from second column)
|
| 492 |
+
with col3:
|
| 493 |
+
st.markdown("<div class='chat-container'>", unsafe_allow_html=True)
|
| 494 |
+
st.subheader(f"{genparam.BOT_3_AVATAR} {genparam.BOT_3_NAME}")
|
| 495 |
+
st.markdown("<div class='chat-messages'>", unsafe_allow_html=True)
|
| 496 |
+
|
| 497 |
+
for message in st.session_state.chat_history_3:
|
| 498 |
+
if message["role"] != "user":
|
| 499 |
+
with st.chat_message(message["role"], avatar=genparam.BOT_3_AVATAR):
|
| 500 |
+
st.markdown(message['content'])
|
| 501 |
+
|
| 502 |
+
st.session_state.chat_history_3.append({"role": "user", "content": user_input, "avatar": genparam.USER_AVATAR})
|
| 503 |
+
milvus_client, emb, vector_index_properties, vector_store_schema = setup_vector_index(
|
| 504 |
+
client,
|
| 505 |
+
wml_credentials,
|
| 506 |
+
st.secrets["vector_index_id_2"] # Use second vector index
|
| 507 |
+
)
|
| 508 |
+
system_prompt = genparam.BOT_3_PROMPT
|
| 509 |
+
|
| 510 |
+
response = fetch_response(
|
| 511 |
+
user_input,
|
| 512 |
+
milvus_client,
|
| 513 |
+
emb,
|
| 514 |
+
vector_index_properties,
|
| 515 |
+
vector_store_schema,
|
| 516 |
+
system_prompt,
|
| 517 |
+
st.session_state.chat_history_3
|
| 518 |
+
)
|
| 519 |
+
st.session_state.chat_history_3.append({"role": genparam.BOT_3_NAME, "content": response, "avatar": genparam.BOT_3_AVATAR})
|
| 520 |
+
st.markdown("</div></div>", unsafe_allow_html=True)
|
| 521 |
+
|
| 522 |
+
|
| 523 |
+
# Update sidebar with new question
|
| 524 |
+
st.sidebar.markdown("---")
|
| 525 |
+
st.sidebar.markdown("**Latest Question:**")
|
| 526 |
+
st.sidebar.markdown(f"_{user_input}_")
|
| 527 |
+
|
| 528 |
+
if __name__ == "__main__":
|
| 529 |
+
main()
|