File size: 4,359 Bytes
d38e9c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60a5571
d38e9c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e648ed7
d38e9c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e648ed7
d38e9c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import streamlit as st
from ibm_watsonx_ai import APIClient, Credentials
from ibm_watsonx_ai.foundation_models import ModelInference
from io import BytesIO
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib import colors
from reportlab.lib.enums import TA_LEFT, TA_RIGHT
from datetime import datetime
import regex
import os


def setup_watsonxai_client(
    api_key: str, project_id: str, url: str = "https://eu-de.ml.cloud.ibm.com"
):
    """Set up a watsonx.ai python SDK client using an apikey and project_id."""
    from ibm_watsonx_ai import APIClient, Credentials

    wx_credentials = Credentials(url=url, api_key=api_key)
    wxai_client = APIClient(wx_credentials, project_id=project_id)

    return wxai_client


emoji_pattern = regex.compile(r"\p{Emoji}", flags=regex.UNICODE)


def remove_emojis(text):
    return emoji_pattern.sub(r"", text)


def create_pdf_from_chat(chat_history):
    buffer = BytesIO()
    doc = SimpleDocTemplate(buffer, pagesize=letter, topMargin=30, bottomMargin=30)
    styles = getSampleStyleSheet()
    flowables = []

    title_style = ParagraphStyle(
        "Title", parent=styles["Heading1"], fontSize=18, spaceAfter=20
    )
    flowables.append(
        Paragraph(
            f"Jimmy Chat History - {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}",
            title_style,
        )
    )

    user_style = ParagraphStyle(
        "UserStyle",
        parent=styles["Normal"],
        backColor=colors.lightblue,
        borderPadding=10,
        alignment=TA_RIGHT,
    )
    jimmy_style = ParagraphStyle(
        "JimmyStyle",
        parent=styles["Normal"],
        backColor=colors.lavender,
        borderPadding=10,
    )

    for message in chat_history:
        role = message["role"]
        content = remove_emojis(message["content"])
        style = user_style if role == "user" else jimmy_style
        flowables.append(Paragraph(f"<b>{role.capitalize()}:</b> {content}", style))
        flowables.append(Spacer(1, 12))

    doc.build(flowables)
    buffer.seek(0)
    return buffer


def watsonx_chat_prompt(
    messages,
    stream=False,
    client=None,
    wx_url=None,
    wx_apikey=None,
    wx_project_id=None,
    model_id=None,
    params=None,
):
    """
    Dynamic chat function for Watson AI

    Args:
        messages (list): List of message objects following watsonx schema.
                        Each message should have 'role' and 'content' keys.
                        Supports system, user, assistant, and tool messages.
        stream (bool): If True, return streaming generator; if False, return complete response
        client (APIClient): Pre-configured Watson client (optional)
        wx_url (str): Watson URL (required if no client)
        wx_apikey (str): Watson API key (required if no client)
        project_id (str): Watson project ID (required if no client)
        model_id (str): Model identifier
        params (dict): Model parameters (optional)

    Returns:
        str or generator: Complete response text or streaming generator based on stream parameter
    """
    # from ibm_watsonx_ai.foundation_models import ModelInference
    # from ibm_watsonx_ai import APIClient, Credentials

    if params is None:
        params = {
            "temperature": 0.7,
            "max_tokens": 4096,
            "top_p": 1.0,
            "stop": ["</s>", "<|end_of_text|>", "<|endoftext|>"],
            # "frequency_penalty": 0.5,
            # "presence_penalty": 0.3,
        }

    # Use provided client or create new one
    if client is None:
        wx_credentials = Credentials(url=wx_url, api_key=wx_apikey)
        client = APIClient(credentials=wx_credentials, project_id=wx_project_id)

    chat_model = ModelInference(api_client=client, model_id=model_id, params=params)

    if stream:
        return chat_model.chat_stream(messages=messages)
    else:
        return chat_model.chat(messages=messages)


def generate_response(watsonx_chat_prompt, stream):
    if stream:
        for chunk in watsonx_chat_prompt:
            if chunk["choices"]:
                yield chunk["choices"][0]["delta"].get("content", "")
    else:
        return watsonx_chat_prompt["choices"][0]["message"]["content"]