Delete app_v2_backup.py
Browse files- app_v2_backup.py +0 -1348
app_v2_backup.py
DELETED
@@ -1,1348 +0,0 @@
|
|
1 |
-
import marimo
|
2 |
-
|
3 |
-
__generated_with = "0.11.16"
|
4 |
-
app = marimo.App(width="medium")
|
5 |
-
|
6 |
-
|
7 |
-
@app.cell
|
8 |
-
def _():
|
9 |
-
import marimo as mo
|
10 |
-
import os
|
11 |
-
return mo, os
|
12 |
-
|
13 |
-
|
14 |
-
@app.cell
|
15 |
-
def _():
|
16 |
-
def get_markdown_content(file_path):
|
17 |
-
with open(file_path, 'r', encoding='utf-8') as file:
|
18 |
-
content = file.read()
|
19 |
-
return content
|
20 |
-
return (get_markdown_content,)
|
21 |
-
|
22 |
-
|
23 |
-
@app.cell
|
24 |
-
def _(get_markdown_content, mo):
|
25 |
-
intro_text = get_markdown_content('intro_markdown/intro.md')
|
26 |
-
intro_marimo = get_markdown_content('intro_markdown/intro_marimo.md')
|
27 |
-
intro_notebook = get_markdown_content('intro_markdown/intro_notebook.md')
|
28 |
-
intro_comparison = get_markdown_content('intro_markdown/intro_comparison.md')
|
29 |
-
|
30 |
-
intro = mo.carousel([
|
31 |
-
mo.md(f"{intro_text}"),
|
32 |
-
mo.md(f"{intro_marimo}"),
|
33 |
-
mo.md(f"{intro_notebook}"),
|
34 |
-
mo.md(f"{intro_comparison}"),
|
35 |
-
])
|
36 |
-
|
37 |
-
mo.accordion({"## Notebook Introduction":intro})
|
38 |
-
return intro, intro_comparison, intro_marimo, intro_notebook, intro_text
|
39 |
-
|
40 |
-
|
41 |
-
@app.cell
|
42 |
-
def _(os):
|
43 |
-
### Imports
|
44 |
-
from typing import (
|
45 |
-
Any, Dict, List, Optional, Pattern, Set, Union, Tuple
|
46 |
-
)
|
47 |
-
from pathlib import Path
|
48 |
-
from urllib.request import urlopen
|
49 |
-
# from rich.markdown import Markdown as Markd
|
50 |
-
from rich.text import Text
|
51 |
-
from rich import print
|
52 |
-
from tqdm import tqdm
|
53 |
-
from enum import Enum
|
54 |
-
import pandas as pd
|
55 |
-
import tempfile
|
56 |
-
import requests
|
57 |
-
import getpass
|
58 |
-
import urllib3
|
59 |
-
import base64
|
60 |
-
import time
|
61 |
-
import json
|
62 |
-
import uuid
|
63 |
-
import ssl
|
64 |
-
import ast
|
65 |
-
import re
|
66 |
-
|
67 |
-
pd.set_option('display.max_columns', None)
|
68 |
-
pd.set_option('display.max_rows', None)
|
69 |
-
pd.set_option('display.max_colwidth', None)
|
70 |
-
pd.set_option('display.width', None)
|
71 |
-
|
72 |
-
# Set explicit temporary directory
|
73 |
-
os.environ['TMPDIR'] = '/tmp'
|
74 |
-
|
75 |
-
# Make sure Python's tempfile module also uses this directory
|
76 |
-
tempfile.tempdir = '/tmp'
|
77 |
-
return (
|
78 |
-
Any,
|
79 |
-
Dict,
|
80 |
-
Enum,
|
81 |
-
List,
|
82 |
-
Optional,
|
83 |
-
Path,
|
84 |
-
Pattern,
|
85 |
-
Set,
|
86 |
-
Text,
|
87 |
-
Tuple,
|
88 |
-
Union,
|
89 |
-
ast,
|
90 |
-
base64,
|
91 |
-
getpass,
|
92 |
-
json,
|
93 |
-
pd,
|
94 |
-
print,
|
95 |
-
re,
|
96 |
-
requests,
|
97 |
-
ssl,
|
98 |
-
tempfile,
|
99 |
-
time,
|
100 |
-
tqdm,
|
101 |
-
urllib3,
|
102 |
-
urlopen,
|
103 |
-
uuid,
|
104 |
-
)
|
105 |
-
|
106 |
-
|
107 |
-
@app.cell
|
108 |
-
def _(mo):
|
109 |
-
### Credentials for the watsonx.ai SDK client
|
110 |
-
|
111 |
-
# Endpoints
|
112 |
-
wx_platform_url = "https://api.dataplatform.cloud.ibm.com"
|
113 |
-
regions = {
|
114 |
-
"US": "https://us-south.ml.cloud.ibm.com",
|
115 |
-
"EU": "https://eu-de.ml.cloud.ibm.com",
|
116 |
-
"GB": "https://eu-gb.ml.cloud.ibm.com",
|
117 |
-
"JP": "https://jp-tok.ml.cloud.ibm.com",
|
118 |
-
"AU": "https://au-syd.ml.cloud.ibm.com",
|
119 |
-
"CA": "https://ca-tor.ml.cloud.ibm.com"
|
120 |
-
}
|
121 |
-
|
122 |
-
# Create a form with multiple elements
|
123 |
-
client_instantiation_form = (
|
124 |
-
mo.md('''
|
125 |
-
###**watsonx.ai credentials:**
|
126 |
-
|
127 |
-
{wx_region}
|
128 |
-
|
129 |
-
{wx_api_key}
|
130 |
-
|
131 |
-
{space_id}
|
132 |
-
''').style(max_height="300px", overflow="auto", border_color="blue")
|
133 |
-
.batch(
|
134 |
-
wx_region = mo.ui.dropdown(regions, label="Select your watsonx.ai region:", value="US", searchable=True),
|
135 |
-
wx_api_key = mo.ui.text(placeholder="Add your IBM Cloud api-key...", label="IBM Cloud Api-key:", kind="password"),
|
136 |
-
# project_id = mo.ui.text(placeholder="Add your watsonx.ai project_id...", label="Project_ID:", kind="text"),
|
137 |
-
space_id = mo.ui.text(placeholder="Add your watsonx.ai space_id...", label="Space_ID:", kind="text")
|
138 |
-
,)
|
139 |
-
.form(show_clear_button=True, bordered=False)
|
140 |
-
)
|
141 |
-
|
142 |
-
|
143 |
-
# client_instantiation_form
|
144 |
-
return client_instantiation_form, regions, wx_platform_url
|
145 |
-
|
146 |
-
|
147 |
-
@app.cell
|
148 |
-
def _(client_instantiation_form, mo):
|
149 |
-
from ibm_watsonx_ai import APIClient, Credentials
|
150 |
-
|
151 |
-
def setup_task_credentials(deployment_client):
|
152 |
-
# Get existing task credentials
|
153 |
-
existing_credentials = deployment_client.task_credentials.get_details()
|
154 |
-
|
155 |
-
# Delete existing credentials if any
|
156 |
-
if "resources" in existing_credentials and existing_credentials["resources"]:
|
157 |
-
for cred in existing_credentials["resources"]:
|
158 |
-
cred_id = deployment_client.task_credentials.get_id(cred)
|
159 |
-
deployment_client.task_credentials.delete(cred_id)
|
160 |
-
|
161 |
-
# Store new credentials
|
162 |
-
return deployment_client.task_credentials.store()
|
163 |
-
|
164 |
-
if client_instantiation_form.value:
|
165 |
-
### Instantiate the watsonx.ai client
|
166 |
-
wx_credentials = Credentials(
|
167 |
-
url=client_instantiation_form.value["wx_region"],
|
168 |
-
api_key=client_instantiation_form.value["wx_api_key"]
|
169 |
-
)
|
170 |
-
|
171 |
-
# project_client = APIClient(credentials=wx_credentials, project_id=client_instantiation_form.value["project_id"])
|
172 |
-
deployment_client = APIClient(credentials=wx_credentials, space_id=client_instantiation_form.value["space_id"])
|
173 |
-
|
174 |
-
task_credentials_details = setup_task_credentials(deployment_client)
|
175 |
-
else:
|
176 |
-
# project_client = None
|
177 |
-
deployment_client = None
|
178 |
-
task_credentials_details = None
|
179 |
-
|
180 |
-
template_variant = mo.ui.dropdown(["Base","Stream Files to IBM COS [Example]"], label="Code Template:", value="Base")
|
181 |
-
|
182 |
-
if deployment_client is not None:
|
183 |
-
client_callout_kind = "success"
|
184 |
-
else:
|
185 |
-
client_callout_kind = "neutral"
|
186 |
-
|
187 |
-
client_callout = mo.callout(template_variant, kind=client_callout_kind)
|
188 |
-
|
189 |
-
# client_callout
|
190 |
-
return (
|
191 |
-
APIClient,
|
192 |
-
Credentials,
|
193 |
-
client_callout,
|
194 |
-
client_callout_kind,
|
195 |
-
deployment_client,
|
196 |
-
setup_task_credentials,
|
197 |
-
task_credentials_details,
|
198 |
-
template_variant,
|
199 |
-
wx_credentials,
|
200 |
-
)
|
201 |
-
|
202 |
-
|
203 |
-
@app.cell
|
204 |
-
def _(
|
205 |
-
client_callout,
|
206 |
-
client_instantiation_form,
|
207 |
-
deploy_fnc,
|
208 |
-
deployment_definition,
|
209 |
-
fm,
|
210 |
-
function_editor,
|
211 |
-
hw_selection_table,
|
212 |
-
mo,
|
213 |
-
purge_tabs,
|
214 |
-
sc_m,
|
215 |
-
schema_editors,
|
216 |
-
selection_table,
|
217 |
-
upload_func,
|
218 |
-
):
|
219 |
-
s1 = mo.md(f'''
|
220 |
-
###**Instantiate your watsonx.ai client:**
|
221 |
-
|
222 |
-
1. Select a region from the dropdown menu
|
223 |
-
|
224 |
-
2. Provide an IBM Cloud Apikey and watsonx.ai deployment space id
|
225 |
-
|
226 |
-
3. Once you submit, the area with the code template will turn green if successful
|
227 |
-
|
228 |
-
4. Select a base (provide baseline format) or example code function template
|
229 |
-
|
230 |
-
---
|
231 |
-
|
232 |
-
{client_instantiation_form}
|
233 |
-
|
234 |
-
---
|
235 |
-
|
236 |
-
{client_callout}
|
237 |
-
|
238 |
-
''')
|
239 |
-
|
240 |
-
sc_tabs = mo.ui.tabs(
|
241 |
-
{
|
242 |
-
"Schema Option Selection": sc_m,
|
243 |
-
"Schema Definition": mo.md(f"""
|
244 |
-
####**Edit the schema definitions you selected in the previous tab.**<br>
|
245 |
-
{schema_editors}"""),
|
246 |
-
}
|
247 |
-
)
|
248 |
-
|
249 |
-
s2 = mo.md(f'''###**Create your function from the template:**
|
250 |
-
|
251 |
-
1. Use the code editor window to create a function to deploy
|
252 |
-
<br>
|
253 |
-
The function must:
|
254 |
-
<br>
|
255 |
-
--- Include a payload and score element
|
256 |
-
<br>
|
257 |
-
--- Have the same function name in both the score = <name>() segment and the Function Name input field below
|
258 |
-
<br>
|
259 |
-
--- Additional details can be found here -> [watsonx.ai - Writing deployable Python functions
|
260 |
-
](https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/ml-deploy-py-function-write.html?utm_medium=Exinfluencer&utm_source=ibm_developer&utm_content=in_content_link&utm_term=10006555&utm_id=blogs_awb-tekton-optimizations-for-kubeflow-pipelines-2-0&context=wx&audience=wdp)
|
261 |
-
|
262 |
-
3. Click submit, then proceed to select whether you wish to add:
|
263 |
-
<br>
|
264 |
-
--- An input schema (describing the format of the variables the function takes) **[Optional]**
|
265 |
-
<br>
|
266 |
-
--- An output schema (describing the format of the output results the function returns) **[Optional]**
|
267 |
-
<br>
|
268 |
-
--- An sample input example (showing an example of a mapping of the input and output schema to actual values.) **[Optional]**
|
269 |
-
|
270 |
-
4. Fill in the function name field **(must be exactly the same as in the function editor)**
|
271 |
-
|
272 |
-
5. Add a description and metadata tags **[Optional]**
|
273 |
-
|
274 |
-
---
|
275 |
-
|
276 |
-
{function_editor}
|
277 |
-
|
278 |
-
---
|
279 |
-
|
280 |
-
{sc_tabs}
|
281 |
-
|
282 |
-
---
|
283 |
-
|
284 |
-
{fm}
|
285 |
-
|
286 |
-
''')
|
287 |
-
|
288 |
-
s3 = mo.md(f'''
|
289 |
-
###**Review and Upload your function**
|
290 |
-
|
291 |
-
1. Review the function metadata specs JSON
|
292 |
-
|
293 |
-
2. Select a software specification if necessary (default for python functions is pre-selected), this is the runtime environment of python that your function will run in. Environments on watsonx.ai come pre-packaged with many different libraries, if necessary install new ones by adding them into the function as a `subprocess.check_output('pip install <package_name>', shell=True)` command.
|
294 |
-
|
295 |
-
3. Once your are satisfied, click the upload function button and wait for the response.
|
296 |
-
|
297 |
-
> If you see no table of software specs, you haven't activated your watsonx.ai client.
|
298 |
-
|
299 |
-
---
|
300 |
-
|
301 |
-
{selection_table}
|
302 |
-
|
303 |
-
---
|
304 |
-
|
305 |
-
{upload_func}
|
306 |
-
|
307 |
-
''')
|
308 |
-
|
309 |
-
s4 = mo.md(f'''
|
310 |
-
###**Deploy your function:**
|
311 |
-
|
312 |
-
1. Select a hardware specification (vCPUs/GB) that you want your function deployed on
|
313 |
-
<br>
|
314 |
-
--- XXS and XS cost the same (0.5 CUH per hour, so XS is the better option
|
315 |
-
<br>
|
316 |
-
--- Select larger instances for more resource intensive tasks or runnable jobs
|
317 |
-
|
318 |
-
2. Select the type of deployment:
|
319 |
-
<br>
|
320 |
-
--- Function (Online) for always-on endpoints - Always available and low latency, but consume resources continuously for every hour they are deployed.
|
321 |
-
<br>
|
322 |
-
--- Batch (Batch) for runnable jobs - Only consume resources during job runs, but aren't as flexible to deploy.
|
323 |
-
|
324 |
-
3. If you've selected Function, pick a completely unique (globally, not just your account) deployment serving name that will be in the endpoint url.
|
325 |
-
|
326 |
-
4. Once your are satisfied, click the deploy function button and wait for the response.
|
327 |
-
|
328 |
-
---
|
329 |
-
|
330 |
-
{hw_selection_table}
|
331 |
-
|
332 |
-
---
|
333 |
-
|
334 |
-
{deployment_definition}
|
335 |
-
|
336 |
-
---
|
337 |
-
|
338 |
-
{deploy_fnc}
|
339 |
-
|
340 |
-
''')
|
341 |
-
|
342 |
-
s5 = mo.md(f'''
|
343 |
-
###**Helper Purge Functions:**
|
344 |
-
|
345 |
-
These functions help you retrieve and mass delete ***(WARNING: purges all at once)*** deployments, data assets or repository assets (functions, models, etc.) that you have in the deployment space. This is meant to support fast cleanup.
|
346 |
-
|
347 |
-
Select the tab based on what you want to delete, then click each of the buttons one by one after the previous gives a response.
|
348 |
-
|
349 |
-
---
|
350 |
-
|
351 |
-
{purge_tabs}
|
352 |
-
|
353 |
-
''')
|
354 |
-
|
355 |
-
sections = mo.accordion(
|
356 |
-
{
|
357 |
-
"Section 1: **watsonx.ai Credentials**": s1,
|
358 |
-
"Section 2: **Function Creation**": s2,
|
359 |
-
"Section 3: **Function Upload**": s3,
|
360 |
-
"Section 4: **Function Deployment**": s4,
|
361 |
-
"Section 5: **Helper Functions**": s5,
|
362 |
-
},
|
363 |
-
multiple=True
|
364 |
-
)
|
365 |
-
|
366 |
-
sections
|
367 |
-
return s1, s2, s3, s4, s5, sc_tabs, sections
|
368 |
-
|
369 |
-
|
370 |
-
@app.cell
|
371 |
-
def _(mo, template_variant):
|
372 |
-
# Template for WatsonX.ai deployable function
|
373 |
-
if template_variant.value == "Stream Files to IBM COS [Example]":
|
374 |
-
with open("stream_files_to_cos.py", "r") as file:
|
375 |
-
template = file.read()
|
376 |
-
else:
|
377 |
-
template = '''def your_function_name():
|
378 |
-
|
379 |
-
import subprocess
|
380 |
-
subprocess.check_output('pip install gensim', shell=True)
|
381 |
-
import gensim
|
382 |
-
|
383 |
-
def score(input_data):
|
384 |
-
message_from_input_payload = payload.get("input_data")[0].get("values")[0][0]
|
385 |
-
response_message = "Received message - {0}".format(message_from_input_payload)
|
386 |
-
|
387 |
-
# Score using the pre-defined model
|
388 |
-
score_response = {
|
389 |
-
'predictions': [{'fields': ['Response_message_field', 'installed_lib_version'],
|
390 |
-
'values': [[response_message, gensim.__version__]]
|
391 |
-
}]
|
392 |
-
}
|
393 |
-
return score_response
|
394 |
-
|
395 |
-
return score
|
396 |
-
|
397 |
-
score = your_function_name()
|
398 |
-
'''
|
399 |
-
|
400 |
-
function_editor = (
|
401 |
-
mo.md('''
|
402 |
-
#### **Create your function by editing the template:**
|
403 |
-
|
404 |
-
{editor}
|
405 |
-
|
406 |
-
''')
|
407 |
-
.batch(
|
408 |
-
editor = mo.ui.code_editor(value=template, language="python", min_height=50)
|
409 |
-
)
|
410 |
-
.form(show_clear_button=True, bordered=False)
|
411 |
-
)
|
412 |
-
|
413 |
-
# function_editor
|
414 |
-
return file, function_editor, template
|
415 |
-
|
416 |
-
|
417 |
-
@app.cell
|
418 |
-
def _(function_editor, mo, os):
|
419 |
-
if function_editor.value:
|
420 |
-
# Get the edited code from the function editor
|
421 |
-
code = function_editor.value['editor']
|
422 |
-
# Create a namespace to execute the code in
|
423 |
-
namespace = {}
|
424 |
-
# Execute the code
|
425 |
-
exec(code, namespace)
|
426 |
-
|
427 |
-
# Find the first function defined in the namespace
|
428 |
-
function_name = None
|
429 |
-
for name, obj in namespace.items():
|
430 |
-
if callable(obj) and name != "__builtins__":
|
431 |
-
function_name = name
|
432 |
-
break
|
433 |
-
|
434 |
-
if function_name:
|
435 |
-
# Instantiate the deployable function
|
436 |
-
deployable_function = namespace[function_name]
|
437 |
-
# Now deployable_function contains the score function
|
438 |
-
mo.md(f"Created deployable function from '{function_name}'")
|
439 |
-
# Create the directory if it doesn't exist
|
440 |
-
save_dir = "/tmp/notebook_functions"
|
441 |
-
os.makedirs(save_dir, exist_ok=True)
|
442 |
-
# Save the function code to a file
|
443 |
-
file_path = os.path.join(save_dir, f"{function_name}.py")
|
444 |
-
with open(file_path, "w") as f:
|
445 |
-
f.write(code)
|
446 |
-
else:
|
447 |
-
mo.md("No function found in the editor code")
|
448 |
-
return (
|
449 |
-
code,
|
450 |
-
deployable_function,
|
451 |
-
f,
|
452 |
-
file_path,
|
453 |
-
function_name,
|
454 |
-
name,
|
455 |
-
namespace,
|
456 |
-
obj,
|
457 |
-
save_dir,
|
458 |
-
)
|
459 |
-
|
460 |
-
|
461 |
-
@app.cell
|
462 |
-
def _(deployment_client, mo, pd):
|
463 |
-
if deployment_client:
|
464 |
-
supported_specs = deployment_client.software_specifications.list()[
|
465 |
-
deployment_client.software_specifications.list()['STATE'] == 'supported'
|
466 |
-
]
|
467 |
-
|
468 |
-
# Reset the index to start from 0
|
469 |
-
supported_specs = supported_specs.reset_index(drop=True)
|
470 |
-
|
471 |
-
# Create a mapping dictionary for framework names based on software specifications
|
472 |
-
framework_mapping = {
|
473 |
-
"tensorflow_rt24.1-py3.11": "TensorFlow",
|
474 |
-
"pytorch-onnx_rt24.1-py3.11": "PyTorch",
|
475 |
-
"onnxruntime_opset_19": "ONNX or ONNXRuntime",
|
476 |
-
"runtime-24.1-py3.11": "AI Services/Python Functions/Python Scripts",
|
477 |
-
"autoai-ts_rt24.1-py3.11": "AutoAI",
|
478 |
-
"autoai-kb_rt24.1-py3.11": "AutoAI",
|
479 |
-
"runtime-24.1-py3.11-cuda": "CUDA-enabled (GPU) Python Runtime",
|
480 |
-
"runtime-24.1-r4.3": "R Runtime 4.3",
|
481 |
-
"spark-mllib_3.4": "Apache Spark 3.4",
|
482 |
-
"autoai-rag_rt24.1-py3.11": "AutoAI RAG"
|
483 |
-
}
|
484 |
-
|
485 |
-
# Define the preferred order for items to appear at the top
|
486 |
-
preferred_order = [
|
487 |
-
"runtime-24.1-py3.11",
|
488 |
-
"runtime-24.1-py3.11-cuda",
|
489 |
-
"runtime-24.1-r4.3",
|
490 |
-
"ai-service-v5-software-specification",
|
491 |
-
"autoai-rag_rt24.1-py3.11",
|
492 |
-
"autoai-ts_rt24.1-py3.11",
|
493 |
-
"autoai-kb_rt24.1-py3.11",
|
494 |
-
"tensorflow_rt24.1-py3.11",
|
495 |
-
"pytorch-onnx_rt24.1-py3.11",
|
496 |
-
"onnxruntime_opset_19",
|
497 |
-
"spark-mllib_3.4",
|
498 |
-
]
|
499 |
-
|
500 |
-
# Create a new column for sorting
|
501 |
-
supported_specs['SORT_ORDER'] = supported_specs['NAME'].apply(
|
502 |
-
lambda x: preferred_order.index(x) if x in preferred_order else len(preferred_order)
|
503 |
-
)
|
504 |
-
|
505 |
-
# Sort the DataFrame by the new column
|
506 |
-
supported_specs = supported_specs.sort_values('SORT_ORDER').reset_index(drop=True)
|
507 |
-
|
508 |
-
# Drop the sorting column as it's no longer needed
|
509 |
-
supported_specs = supported_specs.drop(columns=['SORT_ORDER'])
|
510 |
-
|
511 |
-
# Drop the REPLACEMENT column if it exists and add NOTES column
|
512 |
-
if 'REPLACEMENT' in supported_specs.columns:
|
513 |
-
supported_specs = supported_specs.drop(columns=['REPLACEMENT'])
|
514 |
-
|
515 |
-
# Add NOTES column with framework information
|
516 |
-
supported_specs['NOTES'] = supported_specs['NAME'].map(framework_mapping).fillna("Other")
|
517 |
-
|
518 |
-
# Create a table with single-row selection
|
519 |
-
selection_table = mo.ui.table(
|
520 |
-
supported_specs,
|
521 |
-
selection="single", # Only allow selecting one row
|
522 |
-
label="#### **Select a supported software_spec runtime for your function asset** (For Python Functions select - *'runtime-24.1-py3.11'* ):",
|
523 |
-
initial_selection=[0], # Now selecting the first row, which should be runtime-24.1-py3.11
|
524 |
-
page_size=6
|
525 |
-
)
|
526 |
-
else:
|
527 |
-
sel_df = pd.DataFrame(
|
528 |
-
data=[["ID", "Activate deployment_client."]],
|
529 |
-
columns=["ID", "VALUE"]
|
530 |
-
)
|
531 |
-
|
532 |
-
selection_table = mo.ui.table(
|
533 |
-
sel_df,
|
534 |
-
selection="single", # Only allow selecting one row
|
535 |
-
label="You haven't activated the Deployment_Client",
|
536 |
-
initial_selection=[0]
|
537 |
-
)
|
538 |
-
|
539 |
-
# # Display the table
|
540 |
-
# mo.md(f"""---
|
541 |
-
# <br>
|
542 |
-
# <br>
|
543 |
-
# {selection_table}
|
544 |
-
# <br>
|
545 |
-
# <br>
|
546 |
-
# ---
|
547 |
-
# <br>
|
548 |
-
# <br>
|
549 |
-
# """)
|
550 |
-
return (
|
551 |
-
framework_mapping,
|
552 |
-
preferred_order,
|
553 |
-
sel_df,
|
554 |
-
selection_table,
|
555 |
-
supported_specs,
|
556 |
-
)
|
557 |
-
|
558 |
-
|
559 |
-
@app.cell
|
560 |
-
def _(mo):
|
561 |
-
input_schema_checkbox = mo.ui.checkbox(label="Add input schema (optional)")
|
562 |
-
output_schema_checkbox = mo.ui.checkbox(label="Add output schema (optional)")
|
563 |
-
sample_input_checkbox = mo.ui.checkbox(label="Add sample input example (optional)")
|
564 |
-
return input_schema_checkbox, output_schema_checkbox, sample_input_checkbox
|
565 |
-
|
566 |
-
|
567 |
-
@app.cell
|
568 |
-
def _(
|
569 |
-
input_schema_checkbox,
|
570 |
-
mo,
|
571 |
-
output_schema_checkbox,
|
572 |
-
sample_input_checkbox,
|
573 |
-
selection_table,
|
574 |
-
template_variant,
|
575 |
-
):
|
576 |
-
if selection_table.value['ID'].iloc[0]:
|
577 |
-
# Create the input fields
|
578 |
-
if template_variant.value == "Stream Files to IBM COS [Example]":
|
579 |
-
fnc_nm = "stream_file_to_cos"
|
580 |
-
else:
|
581 |
-
fnc_nm = "your_function_name"
|
582 |
-
|
583 |
-
uploaded_function_name = mo.ui.text(placeholder="<Must be the same as the name in editor>", label="Function Name:", kind="text", value=f"{fnc_nm}", full_width=False)
|
584 |
-
tags_editor = mo.ui.array(
|
585 |
-
[mo.ui.text(placeholder="Metadata Tags..."), mo.ui.text(), mo.ui.text()],
|
586 |
-
label="Optional Metadata Tags"
|
587 |
-
)
|
588 |
-
software_spec = selection_table.value['ID'].iloc[0]
|
589 |
-
|
590 |
-
description_input = mo.ui.text_area(
|
591 |
-
placeholder="Write a description for your function...)",
|
592 |
-
label="Description",
|
593 |
-
max_length=256,
|
594 |
-
rows=5,
|
595 |
-
full_width=True
|
596 |
-
)
|
597 |
-
|
598 |
-
|
599 |
-
func_metadata=mo.hstack([
|
600 |
-
description_input,
|
601 |
-
mo.hstack([
|
602 |
-
uploaded_function_name,
|
603 |
-
tags_editor,
|
604 |
-
], justify="start", gap=1, align="start", wrap=True)
|
605 |
-
],
|
606 |
-
widths=[0.6,0.4],
|
607 |
-
gap=2.75
|
608 |
-
)
|
609 |
-
|
610 |
-
schema_metadata=mo.hstack([
|
611 |
-
input_schema_checkbox,
|
612 |
-
output_schema_checkbox,
|
613 |
-
sample_input_checkbox
|
614 |
-
],
|
615 |
-
justify="center", gap=1, align="center", wrap=True
|
616 |
-
)
|
617 |
-
|
618 |
-
# Display the metadata inputs
|
619 |
-
# mo.vstack([
|
620 |
-
# func_metadata,
|
621 |
-
# mo.md("**Make sure to click the checkboxes before filling in descriptions and tags or they will reset.**"),
|
622 |
-
# schema_metadata
|
623 |
-
# ],
|
624 |
-
# align="center",
|
625 |
-
# gap=2
|
626 |
-
# )
|
627 |
-
fm = mo.vstack([
|
628 |
-
func_metadata,
|
629 |
-
],
|
630 |
-
align="center",
|
631 |
-
gap=2
|
632 |
-
)
|
633 |
-
sc_m = mo.vstack([
|
634 |
-
schema_metadata,
|
635 |
-
mo.md("**Make sure to select the checkbox options before filling in descriptions and tags or they will reset.**")
|
636 |
-
],
|
637 |
-
align="center",
|
638 |
-
gap=2
|
639 |
-
)
|
640 |
-
return (
|
641 |
-
description_input,
|
642 |
-
fm,
|
643 |
-
fnc_nm,
|
644 |
-
func_metadata,
|
645 |
-
sc_m,
|
646 |
-
schema_metadata,
|
647 |
-
software_spec,
|
648 |
-
tags_editor,
|
649 |
-
uploaded_function_name,
|
650 |
-
)
|
651 |
-
|
652 |
-
|
653 |
-
@app.cell
|
654 |
-
def _(json, mo, template_variant):
|
655 |
-
if template_variant.value == "Stream Files to IBM COS [Example]":
|
656 |
-
from cos_stream_schema_examples import input_schema, output_schema, sample_input
|
657 |
-
else:
|
658 |
-
input_schema = [
|
659 |
-
{
|
660 |
-
'id': '1',
|
661 |
-
'type': 'struct',
|
662 |
-
'fields': [
|
663 |
-
{
|
664 |
-
'name': '<variable name 1>',
|
665 |
-
'type': 'string',
|
666 |
-
'nullable': False,
|
667 |
-
'metadata': {}
|
668 |
-
},
|
669 |
-
{
|
670 |
-
'name': '<variable name 2>',
|
671 |
-
'type': 'string',
|
672 |
-
'nullable': False,
|
673 |
-
'metadata': {}
|
674 |
-
}
|
675 |
-
]
|
676 |
-
}
|
677 |
-
]
|
678 |
-
|
679 |
-
output_schema = [
|
680 |
-
{
|
681 |
-
'id': '1',
|
682 |
-
'type': 'struct',
|
683 |
-
'fields': [
|
684 |
-
{
|
685 |
-
'name': '<output return name>',
|
686 |
-
'type': 'string',
|
687 |
-
'nullable': False,
|
688 |
-
'metadata': {}
|
689 |
-
}
|
690 |
-
]
|
691 |
-
}
|
692 |
-
]
|
693 |
-
|
694 |
-
sample_input = {
|
695 |
-
'input_data': [
|
696 |
-
{
|
697 |
-
'fields': ['<variable name 1>', '<variable name 2>'],
|
698 |
-
'values': [
|
699 |
-
['<sample input value for variable 1>', '<sample input value for variable 2>']
|
700 |
-
]
|
701 |
-
}
|
702 |
-
]
|
703 |
-
}
|
704 |
-
|
705 |
-
|
706 |
-
input_schema_editor = mo.ui.code_editor(value=json.dumps(input_schema, indent=4), language="python", min_height=25)
|
707 |
-
output_schema_editor = mo.ui.code_editor(value=json.dumps(output_schema, indent=4), language="python", min_height=25)
|
708 |
-
sample_input_editor = mo.ui.code_editor(value=json.dumps(sample_input, indent=4), language="python", min_height=25)
|
709 |
-
|
710 |
-
schema_editors = mo.accordion(
|
711 |
-
{
|
712 |
-
"""**Input Schema Metadata Editor**""": input_schema_editor,
|
713 |
-
"""**Output Schema Metadata Editor**""": output_schema_editor,
|
714 |
-
"""**Sample Input Metadata Editor**""": sample_input_editor
|
715 |
-
}, multiple=True
|
716 |
-
)
|
717 |
-
|
718 |
-
# schema_editors
|
719 |
-
return (
|
720 |
-
input_schema,
|
721 |
-
input_schema_editor,
|
722 |
-
output_schema,
|
723 |
-
output_schema_editor,
|
724 |
-
sample_input,
|
725 |
-
sample_input_editor,
|
726 |
-
schema_editors,
|
727 |
-
)
|
728 |
-
|
729 |
-
|
730 |
-
@app.cell
|
731 |
-
def _(
|
732 |
-
ast,
|
733 |
-
deployment_client,
|
734 |
-
description_input,
|
735 |
-
function_editor,
|
736 |
-
input_schema_checkbox,
|
737 |
-
input_schema_editor,
|
738 |
-
json,
|
739 |
-
mo,
|
740 |
-
os,
|
741 |
-
output_schema_checkbox,
|
742 |
-
output_schema_editor,
|
743 |
-
sample_input_checkbox,
|
744 |
-
sample_input_editor,
|
745 |
-
selection_table,
|
746 |
-
software_spec,
|
747 |
-
tags_editor,
|
748 |
-
uploaded_function_name,
|
749 |
-
):
|
750 |
-
get_upload_status, set_upload_status = mo.state("No uploads yet")
|
751 |
-
|
752 |
-
function_meta = {}
|
753 |
-
|
754 |
-
if selection_table.value['ID'].iloc[0] and deployment_client is not None:
|
755 |
-
# Start with the base required fields
|
756 |
-
function_meta = {
|
757 |
-
deployment_client.repository.FunctionMetaNames.NAME: f"{uploaded_function_name.value}" or "your_function_name",
|
758 |
-
deployment_client.repository.FunctionMetaNames.SOFTWARE_SPEC_ID: software_spec or "45f12dfe-aa78-5b8d-9f38-0ee223c47309"
|
759 |
-
}
|
760 |
-
|
761 |
-
# Add optional fields if they exist
|
762 |
-
if tags_editor.value:
|
763 |
-
# Filter out empty strings from the tags list
|
764 |
-
filtered_tags = [tag for tag in tags_editor.value if tag and tag.strip()]
|
765 |
-
if filtered_tags: # Only add if there are non-empty tags
|
766 |
-
function_meta[deployment_client.repository.FunctionMetaNames.TAGS] = filtered_tags
|
767 |
-
|
768 |
-
|
769 |
-
if description_input.value:
|
770 |
-
function_meta[deployment_client.repository.FunctionMetaNames.DESCRIPTION] = description_input.value
|
771 |
-
|
772 |
-
# Add input schema if checkbox is checked
|
773 |
-
if input_schema_checkbox.value:
|
774 |
-
try:
|
775 |
-
function_meta[deployment_client.repository.FunctionMetaNames.INPUT_DATA_SCHEMAS] = json.loads(input_schema_editor.value)
|
776 |
-
except json.JSONDecodeError:
|
777 |
-
# If JSON parsing fails, try Python literal evaluation as fallback
|
778 |
-
function_meta[deployment_client.repository.FunctionMetaNames.INPUT_DATA_SCHEMAS] = ast.literal_eval(input_schema_editor.value)
|
779 |
-
|
780 |
-
# Add output schema if checkbox is checked
|
781 |
-
if output_schema_checkbox.value:
|
782 |
-
try:
|
783 |
-
function_meta[deployment_client.repository.FunctionMetaNames.OUTPUT_DATA_SCHEMAS] = json.loads(output_schema_editor.value)
|
784 |
-
except json.JSONDecodeError:
|
785 |
-
# If JSON parsing fails, try Python literal evaluation as fallback
|
786 |
-
function_meta[deployment_client.repository.FunctionMetaNames.OUTPUT_DATA_SCHEMAS] = ast.literal_eval(output_schema_editor.value)
|
787 |
-
|
788 |
-
# Add sample input if checkbox is checked
|
789 |
-
if sample_input_checkbox.value:
|
790 |
-
try:
|
791 |
-
function_meta[deployment_client.repository.FunctionMetaNames.SAMPLE_SCORING_INPUT] = json.loads(sample_input_editor.value)
|
792 |
-
except json.JSONDecodeError:
|
793 |
-
# If JSON parsing fails, try Python literal evaluation as fallback
|
794 |
-
function_meta[deployment_client.repository.FunctionMetaNames.SAMPLE_SCORING_INPUT] = ast.literal_eval(sample_input_editor.value)
|
795 |
-
|
796 |
-
def upload_function(function_meta, use_function_object=True):
|
797 |
-
"""
|
798 |
-
Uploads a Python function to watsonx.ai as a deployable asset.
|
799 |
-
Parameters:
|
800 |
-
function_meta (dict): Metadata for the function
|
801 |
-
use_function_object (bool): Whether to use function object (True) or file path (False)
|
802 |
-
Returns:
|
803 |
-
dict: Details of the uploaded function
|
804 |
-
"""
|
805 |
-
# Store the original working directory
|
806 |
-
original_dir = os.getcwd()
|
807 |
-
|
808 |
-
try:
|
809 |
-
# Create temp file from the code in the editor
|
810 |
-
code_to_deploy = function_editor.value['editor']
|
811 |
-
# This function is defined elsewhere in the notebook
|
812 |
-
func_name = uploaded_function_name.value or "your_function_name"
|
813 |
-
# Ensure function_meta has the correct function name
|
814 |
-
function_meta[deployment_client.repository.FunctionMetaNames.NAME] = func_name
|
815 |
-
# Save the file locally first
|
816 |
-
save_dir = "/tmp/notebook_functions"
|
817 |
-
os.makedirs(save_dir, exist_ok=True)
|
818 |
-
file_path = f"{save_dir}/{func_name}.py"
|
819 |
-
with open(file_path, "w", encoding="utf-8") as f:
|
820 |
-
f.write(code_to_deploy)
|
821 |
-
|
822 |
-
if use_function_object:
|
823 |
-
# Import the function from the file
|
824 |
-
import sys
|
825 |
-
import importlib.util
|
826 |
-
# Add the directory to Python's path
|
827 |
-
sys.path.append(save_dir)
|
828 |
-
# Import the module
|
829 |
-
spec = importlib.util.spec_from_file_location(func_name, file_path)
|
830 |
-
module = importlib.util.module_from_spec(spec)
|
831 |
-
spec.loader.exec_module(module)
|
832 |
-
# Get the function object
|
833 |
-
function_object = getattr(module, func_name)
|
834 |
-
|
835 |
-
# Change to /tmp directory before calling IBM Watson SDK functions
|
836 |
-
os.chdir('/tmp')
|
837 |
-
|
838 |
-
# Upload the function object
|
839 |
-
mo.md(f"Uploading function object: {func_name}")
|
840 |
-
func_details = deployment_client.repository.store_function(function_object, function_meta)
|
841 |
-
else:
|
842 |
-
# Change to /tmp directory before calling IBM Watson SDK functions
|
843 |
-
os.chdir('/tmp')
|
844 |
-
|
845 |
-
# Upload using the file path approach
|
846 |
-
mo.md(f"Uploading function from file: {file_path}")
|
847 |
-
func_details = deployment_client.repository.store_function(file_path, function_meta)
|
848 |
-
|
849 |
-
set_upload_status(f"Latest Upload - id - {func_details['metadata']['id']}")
|
850 |
-
return func_details
|
851 |
-
except Exception as e:
|
852 |
-
set_upload_status(f"Error uploading function: {str(e)}")
|
853 |
-
mo.md(f"Detailed error: {str(e)}")
|
854 |
-
raise
|
855 |
-
finally:
|
856 |
-
# Always change back to the original directory, even if an exception occurs
|
857 |
-
os.chdir(original_dir)
|
858 |
-
|
859 |
-
upload_status = mo.state("No uploads yet")
|
860 |
-
|
861 |
-
upload_button = mo.ui.button(
|
862 |
-
label="Upload Function",
|
863 |
-
on_click=lambda _: upload_function(function_meta, use_function_object=True),
|
864 |
-
kind="success",
|
865 |
-
tooltip="Click to upload function to watsonx.ai"
|
866 |
-
)
|
867 |
-
|
868 |
-
# function_meta
|
869 |
-
return (
|
870 |
-
filtered_tags,
|
871 |
-
function_meta,
|
872 |
-
get_upload_status,
|
873 |
-
set_upload_status,
|
874 |
-
upload_button,
|
875 |
-
upload_function,
|
876 |
-
upload_status,
|
877 |
-
)
|
878 |
-
|
879 |
-
|
880 |
-
@app.cell
|
881 |
-
def _(get_upload_status, mo, upload_button):
|
882 |
-
# Upload your function
|
883 |
-
if upload_button.value:
|
884 |
-
try:
|
885 |
-
upload_result = upload_button.value
|
886 |
-
artifact_id = upload_result['metadata']['id']
|
887 |
-
except Exception as e:
|
888 |
-
mo.md(f"Error: {str(e)}")
|
889 |
-
|
890 |
-
upload_func = mo.vstack([
|
891 |
-
upload_button,
|
892 |
-
mo.md(f"**Status:** {get_upload_status()}")
|
893 |
-
], justify="space-around", align="center")
|
894 |
-
return artifact_id, upload_func, upload_result
|
895 |
-
|
896 |
-
|
897 |
-
@app.cell
|
898 |
-
def _(deployment_client, mo, pd, upload_button, uuid):
|
899 |
-
def reorder_hardware_specifications(df):
|
900 |
-
"""
|
901 |
-
Reorders a hardware specifications dataframe by type and size of environment
|
902 |
-
without hardcoding specific hardware types.
|
903 |
-
|
904 |
-
Parameters:
|
905 |
-
df (pandas.DataFrame): The hardware specifications dataframe to reorder
|
906 |
-
|
907 |
-
Returns:
|
908 |
-
pandas.DataFrame: Reordered dataframe with reset index
|
909 |
-
"""
|
910 |
-
# Create a copy to avoid modifying the original dataframe
|
911 |
-
result_df = df.copy()
|
912 |
-
|
913 |
-
# Define a function to extract the base type and size
|
914 |
-
def get_sort_key(name):
|
915 |
-
# Create a custom ordering list
|
916 |
-
custom_order = [
|
917 |
-
"XXS", "XS", "S", "M", "L", "XL",
|
918 |
-
"XS-Spark", "S-Spark", "M-Spark", "L-Spark", "XL-Spark",
|
919 |
-
"K80", "K80x2", "K80x4",
|
920 |
-
"V100", "V100x2",
|
921 |
-
"WXaaS-XS", "WXaaS-S", "WXaaS-M", "WXaaS-L", "WXaaS-XL",
|
922 |
-
"Default Spark", "Notebook Default Spark", "ML"
|
923 |
-
]
|
924 |
-
|
925 |
-
# If name is in the custom order list, use its index
|
926 |
-
if name in custom_order:
|
927 |
-
return (0, custom_order.index(name))
|
928 |
-
|
929 |
-
# For any name not in the custom order, put it at the end
|
930 |
-
return (1, name)
|
931 |
-
|
932 |
-
# Add a temporary column for sorting
|
933 |
-
result_df['sort_key'] = result_df['NAME'].apply(get_sort_key)
|
934 |
-
|
935 |
-
# Sort the dataframe and drop the temporary column
|
936 |
-
result_df = result_df.sort_values('sort_key').drop('sort_key', axis=1)
|
937 |
-
|
938 |
-
# Reset the index
|
939 |
-
result_df = result_df.reset_index(drop=True)
|
940 |
-
|
941 |
-
return result_df
|
942 |
-
|
943 |
-
if deployment_client and upload_button.value:
|
944 |
-
|
945 |
-
hardware_specs = deployment_client.hardware_specifications.list()
|
946 |
-
hardware_specs_df = reorder_hardware_specifications(hardware_specs)
|
947 |
-
|
948 |
-
# Create a table with single-row selection
|
949 |
-
hw_selection_table = mo.ui.table(
|
950 |
-
hardware_specs_df,
|
951 |
-
selection="single", # Only allow selecting one row
|
952 |
-
label="#### **Select a supported hardware_specification for your deployment** *(Default: 'XS' - 1vCPU_4GB Ram)*",
|
953 |
-
initial_selection=[1],
|
954 |
-
page_size=6,
|
955 |
-
wrapped_columns=['DESCRIPTION']
|
956 |
-
)
|
957 |
-
|
958 |
-
deployment_type = mo.ui.radio(
|
959 |
-
options={"Function":"Online (Function Endpoint)","Runnable Job":"Batch (Runnable Jobs)"}, value="Function", label="Select the Type of Deployment:", inline=True
|
960 |
-
)
|
961 |
-
uuid_suffix = str(uuid.uuid4())[:4]
|
962 |
-
|
963 |
-
deployment_name = mo.ui.text(value=f"deployed_func_{uuid_suffix}", label="Deployment Name:", placeholder="<Must be completely unique>")
|
964 |
-
else:
|
965 |
-
hw_df = pd.DataFrame(
|
966 |
-
data=[["ID", "Activate deployment_client."]],
|
967 |
-
columns=["ID", "VALUE"]
|
968 |
-
)
|
969 |
-
|
970 |
-
hw_selection_table = mo.ui.table(
|
971 |
-
hw_df,
|
972 |
-
selection="single", # Only allow selecting one row
|
973 |
-
label="You haven't activated the Deployment_Client",
|
974 |
-
initial_selection=[0]
|
975 |
-
)
|
976 |
-
|
977 |
-
|
978 |
-
# mo.md(f"""
|
979 |
-
# <br>
|
980 |
-
# <br>
|
981 |
-
# {upload_func}
|
982 |
-
# <br>
|
983 |
-
# <br>
|
984 |
-
# ---
|
985 |
-
# {hw_selection_table}
|
986 |
-
# <br>
|
987 |
-
# <br>
|
988 |
-
|
989 |
-
|
990 |
-
# """)
|
991 |
-
return (
|
992 |
-
deployment_name,
|
993 |
-
deployment_type,
|
994 |
-
hardware_specs,
|
995 |
-
hardware_specs_df,
|
996 |
-
hw_df,
|
997 |
-
hw_selection_table,
|
998 |
-
reorder_hardware_specifications,
|
999 |
-
uuid_suffix,
|
1000 |
-
)
|
1001 |
-
|
1002 |
-
|
1003 |
-
@app.cell
|
1004 |
-
def _(
|
1005 |
-
artifact_id,
|
1006 |
-
deployment_client,
|
1007 |
-
deployment_details,
|
1008 |
-
deployment_name,
|
1009 |
-
deployment_type,
|
1010 |
-
hw_selection_table,
|
1011 |
-
mo,
|
1012 |
-
print,
|
1013 |
-
upload_button,
|
1014 |
-
):
|
1015 |
-
def deploy_function(artifact_id, deployment_type):
|
1016 |
-
"""
|
1017 |
-
Deploys a function asset to watsonx.ai.
|
1018 |
-
|
1019 |
-
Parameters:
|
1020 |
-
artifact_id (str): ID of the function artifact to deploy
|
1021 |
-
deployment_type (object): Type of deployment (online or batch)
|
1022 |
-
|
1023 |
-
Returns:
|
1024 |
-
dict: Details of the deployed function
|
1025 |
-
"""
|
1026 |
-
if not artifact_id:
|
1027 |
-
print("Error: No artifact ID provided. Please upload a function first.")
|
1028 |
-
return None
|
1029 |
-
|
1030 |
-
if deployment_type.value == "Online (Function Endpoint)": # Changed from "Online (Function Endpoint)"
|
1031 |
-
deployment_props = {
|
1032 |
-
deployment_client.deployments.ConfigurationMetaNames.NAME: deployment_name.value,
|
1033 |
-
deployment_client.deployments.ConfigurationMetaNames.ONLINE: {},
|
1034 |
-
deployment_client.deployments.ConfigurationMetaNames.HARDWARE_SPEC: {"id": selected_hw_config},
|
1035 |
-
deployment_client.deployments.ConfigurationMetaNames.SERVING_NAME: deployment_name.value,
|
1036 |
-
}
|
1037 |
-
else: # "Runnable Job" instead of "Batch (Runnable Jobs)"
|
1038 |
-
deployment_props = {
|
1039 |
-
deployment_client.deployments.ConfigurationMetaNames.NAME: deployment_name.value,
|
1040 |
-
deployment_client.deployments.ConfigurationMetaNames.BATCH: {},
|
1041 |
-
deployment_client.deployments.ConfigurationMetaNames.HARDWARE_SPEC: {"id": selected_hw_config},
|
1042 |
-
# batch does not use serving names
|
1043 |
-
}
|
1044 |
-
|
1045 |
-
try:
|
1046 |
-
print(deployment_props)
|
1047 |
-
# First, get the asset details to confirm it exists
|
1048 |
-
asset_details = deployment_client.repository.get_details(artifact_id)
|
1049 |
-
print(f"Asset found: {asset_details['metadata']['name']} with ID: {asset_details['metadata']['id']}")
|
1050 |
-
|
1051 |
-
# Create the deployment
|
1052 |
-
deployed_function = deployment_client.deployments.create(artifact_id, deployment_props)
|
1053 |
-
print(f"Creating deployment from Asset: {artifact_id} with deployment properties {str(deployment_props)}")
|
1054 |
-
return deployed_function
|
1055 |
-
except Exception as e:
|
1056 |
-
print(f"Deployment error: {str(e)}")
|
1057 |
-
return None
|
1058 |
-
|
1059 |
-
def get_deployment_id(deployed_function):
|
1060 |
-
deployment_id = deployment_client.deployments.get_uid(deployment_details)
|
1061 |
-
return deployment_id
|
1062 |
-
|
1063 |
-
def get_deployment_info(deployment_id):
|
1064 |
-
deployment_info = deployment_client.deployments.get_details(deployment_id)
|
1065 |
-
return deployment_info
|
1066 |
-
|
1067 |
-
deployment_status = mo.state("No deployments yet")
|
1068 |
-
|
1069 |
-
if hw_selection_table.value['ID'].iloc[0]:
|
1070 |
-
selected_hw_config = hw_selection_table.value['ID'].iloc[0]
|
1071 |
-
|
1072 |
-
deploy_button = mo.ui.button(
|
1073 |
-
label="Deploy Function",
|
1074 |
-
on_click=lambda _: deploy_function(artifact_id, deployment_type),
|
1075 |
-
kind="success",
|
1076 |
-
tooltip="Click to deploy function to watsonx.ai"
|
1077 |
-
)
|
1078 |
-
|
1079 |
-
if deployment_client and upload_button.value:
|
1080 |
-
deployment_definition = mo.hstack([
|
1081 |
-
deployment_type,
|
1082 |
-
deployment_name
|
1083 |
-
], justify="space-around")
|
1084 |
-
else:
|
1085 |
-
deployment_definition = mo.hstack([
|
1086 |
-
"No Deployment Type Selected",
|
1087 |
-
"No Deployment Name Provided"
|
1088 |
-
], justify="space-around")
|
1089 |
-
|
1090 |
-
# deployment_definition
|
1091 |
-
return (
|
1092 |
-
deploy_button,
|
1093 |
-
deploy_function,
|
1094 |
-
deployment_definition,
|
1095 |
-
deployment_status,
|
1096 |
-
get_deployment_id,
|
1097 |
-
get_deployment_info,
|
1098 |
-
selected_hw_config,
|
1099 |
-
)
|
1100 |
-
|
1101 |
-
|
1102 |
-
@app.cell
|
1103 |
-
def _(deploy_button, deployment_definition, mo):
|
1104 |
-
_ = deployment_definition
|
1105 |
-
|
1106 |
-
deploy_fnc = mo.vstack([
|
1107 |
-
deploy_button,
|
1108 |
-
deploy_button.value
|
1109 |
-
], justify="space-around", align="center")
|
1110 |
-
|
1111 |
-
# mo.md(f"""
|
1112 |
-
# {deployment_definition}
|
1113 |
-
# <br>
|
1114 |
-
# <br>
|
1115 |
-
# {deploy_fnc}
|
1116 |
-
|
1117 |
-
# ---
|
1118 |
-
# """)
|
1119 |
-
return (deploy_fnc,)
|
1120 |
-
|
1121 |
-
|
1122 |
-
@app.cell(hide_code=True)
|
1123 |
-
def _(deployment_client, mo):
|
1124 |
-
### Functions to List , Get ID's as a list and Purge of Assets
|
1125 |
-
|
1126 |
-
def get_deployment_list():
|
1127 |
-
deployment_df = deployment_client.deployments.list()
|
1128 |
-
return deployment_df
|
1129 |
-
|
1130 |
-
def get_deployment_ids(df):
|
1131 |
-
dep_list = df['ID'].tolist()
|
1132 |
-
return dep_list
|
1133 |
-
|
1134 |
-
def get_data_assets_list():
|
1135 |
-
data_assets_df = deployment_client.data_assets.list()
|
1136 |
-
return data_assets_df
|
1137 |
-
|
1138 |
-
def get_data_asset_ids(df):
|
1139 |
-
data_asset_list = df['ASSET_ID'].tolist()
|
1140 |
-
return data_asset_list
|
1141 |
-
|
1142 |
-
### List Repository Assets, Get ID's as a list and Purge Repository Assets (AI Services, Functions, Models, etc.)
|
1143 |
-
def get_repository_list():
|
1144 |
-
repository_df = deployment_client.repository.list()
|
1145 |
-
return repository_df
|
1146 |
-
|
1147 |
-
def get_repository_ids(df):
|
1148 |
-
repository_list = df['ID'].tolist()
|
1149 |
-
return repository_list
|
1150 |
-
|
1151 |
-
def delete_with_progress(ids_list, delete_function, item_type="items"):
|
1152 |
-
"""
|
1153 |
-
Generic wrapper that adds a progress bar to any deletion function
|
1154 |
-
|
1155 |
-
Parameters:
|
1156 |
-
ids_list: List of IDs to delete
|
1157 |
-
delete_function: Function that deletes a single ID
|
1158 |
-
item_type: String describing what's being deleted (for display)
|
1159 |
-
"""
|
1160 |
-
with mo.status.progress_bar(
|
1161 |
-
total=len(ids_list) or 1,
|
1162 |
-
title=f"Purging {item_type}",
|
1163 |
-
subtitle=f"Deleting {item_type}...",
|
1164 |
-
completion_title="Purge Complete",
|
1165 |
-
completion_subtitle=f"Successfully deleted {len(ids_list)} {item_type}"
|
1166 |
-
) as progress:
|
1167 |
-
for item_id in ids_list:
|
1168 |
-
delete_function(item_id)
|
1169 |
-
progress.update(increment=1)
|
1170 |
-
return f"Deleted {len(ids_list)} {item_type} successfully"
|
1171 |
-
|
1172 |
-
# Use with existing deletion functions
|
1173 |
-
def delete_deployments(deployment_ids):
|
1174 |
-
return delete_with_progress(
|
1175 |
-
deployment_ids,
|
1176 |
-
lambda id: deployment_client.deployments.delete(id),
|
1177 |
-
"deployments"
|
1178 |
-
)
|
1179 |
-
|
1180 |
-
def delete_data_assets(data_asset_ids):
|
1181 |
-
return delete_with_progress(
|
1182 |
-
data_asset_ids,
|
1183 |
-
lambda id: deployment_client.data_assets.delete(id),
|
1184 |
-
"data assets"
|
1185 |
-
)
|
1186 |
-
|
1187 |
-
def delete_repository_items(repository_ids):
|
1188 |
-
return delete_with_progress(
|
1189 |
-
repository_ids,
|
1190 |
-
lambda id: deployment_client.repository.delete(id),
|
1191 |
-
"repository items"
|
1192 |
-
)
|
1193 |
-
return (
|
1194 |
-
delete_data_assets,
|
1195 |
-
delete_deployments,
|
1196 |
-
delete_repository_items,
|
1197 |
-
delete_with_progress,
|
1198 |
-
get_data_asset_ids,
|
1199 |
-
get_data_assets_list,
|
1200 |
-
get_deployment_ids,
|
1201 |
-
get_deployment_list,
|
1202 |
-
get_repository_ids,
|
1203 |
-
get_repository_list,
|
1204 |
-
)
|
1205 |
-
|
1206 |
-
|
1207 |
-
@app.cell
|
1208 |
-
def _(get_deployment_id_list, get_deployments_button, mo, purge_deployments):
|
1209 |
-
deployments_purge_stack = mo.hstack([get_deployments_button, get_deployment_id_list, purge_deployments])
|
1210 |
-
deployments_purge_stack_results = mo.vstack([get_deployments_button.value, get_deployment_id_list.value, purge_deployments.value])
|
1211 |
-
|
1212 |
-
deployments_purge_tab = mo.vstack([deployments_purge_stack, deployments_purge_stack_results])
|
1213 |
-
return (
|
1214 |
-
deployments_purge_stack,
|
1215 |
-
deployments_purge_stack_results,
|
1216 |
-
deployments_purge_tab,
|
1217 |
-
)
|
1218 |
-
|
1219 |
-
|
1220 |
-
@app.cell
|
1221 |
-
def _(get_repository_button, get_repository_id_list, mo, purge_repository):
|
1222 |
-
repository_purge_stack = mo.hstack([get_repository_button, get_repository_id_list, purge_repository])
|
1223 |
-
|
1224 |
-
repository_purge_stack_results = mo.vstack([get_repository_button.value, get_repository_id_list.value, purge_repository.value])
|
1225 |
-
|
1226 |
-
repository_purge_tab = mo.vstack([repository_purge_stack, repository_purge_stack_results])
|
1227 |
-
return (
|
1228 |
-
repository_purge_stack,
|
1229 |
-
repository_purge_stack_results,
|
1230 |
-
repository_purge_tab,
|
1231 |
-
)
|
1232 |
-
|
1233 |
-
|
1234 |
-
@app.cell
|
1235 |
-
def _(get_data_asset_id_list, get_data_assets_button, mo, purge_data_assets):
|
1236 |
-
data_assets_purge_stack = mo.hstack([get_data_assets_button, get_data_asset_id_list, purge_data_assets])
|
1237 |
-
data_assets_purge_stack_results = mo.vstack([get_data_assets_button.value, get_data_asset_id_list.value, purge_data_assets.value])
|
1238 |
-
|
1239 |
-
data_assets_purge_tab = mo.vstack([data_assets_purge_stack, data_assets_purge_stack_results])
|
1240 |
-
return (
|
1241 |
-
data_assets_purge_stack,
|
1242 |
-
data_assets_purge_stack_results,
|
1243 |
-
data_assets_purge_tab,
|
1244 |
-
)
|
1245 |
-
|
1246 |
-
|
1247 |
-
@app.cell
|
1248 |
-
def _(data_assets_purge_tab, deployments_purge_tab, mo, repository_purge_tab):
|
1249 |
-
purge_tabs = mo.ui.tabs(
|
1250 |
-
{"Purge Deployments": deployments_purge_tab, "Purge Repository Assets": repository_purge_tab,"Purge Data Assets": data_assets_purge_tab }, lazy=False
|
1251 |
-
)
|
1252 |
-
|
1253 |
-
# asset_purge = mo.accordion(
|
1254 |
-
# {
|
1255 |
-
# """<br>
|
1256 |
-
# #### **Supporting Cleanup Functionality, lists of different assets and purge them if needed** *(purges all detected)*
|
1257 |
-
# <br>""": purge_tabs,
|
1258 |
-
# }
|
1259 |
-
# )
|
1260 |
-
|
1261 |
-
# asset_purge
|
1262 |
-
return (purge_tabs,)
|
1263 |
-
|
1264 |
-
|
1265 |
-
@app.cell(hide_code=True)
|
1266 |
-
def _(
|
1267 |
-
delete_data_assets,
|
1268 |
-
delete_deployments,
|
1269 |
-
delete_repository_items,
|
1270 |
-
get_data_asset_ids,
|
1271 |
-
get_data_assets_list,
|
1272 |
-
get_deployment_ids,
|
1273 |
-
get_deployment_list,
|
1274 |
-
get_repository_ids,
|
1275 |
-
get_repository_list,
|
1276 |
-
mo,
|
1277 |
-
):
|
1278 |
-
### Temporary Function Purge - Assets
|
1279 |
-
get_data_assets_button = mo.ui.button(
|
1280 |
-
label="Get Data Assets Dataframe",
|
1281 |
-
on_click=lambda _: get_data_assets_list(),
|
1282 |
-
kind="neutral",
|
1283 |
-
)
|
1284 |
-
|
1285 |
-
get_data_asset_id_list = mo.ui.button(
|
1286 |
-
label="Turn Dataframe into List of IDs",
|
1287 |
-
on_click=lambda _: get_data_asset_ids(get_data_assets_button.value),
|
1288 |
-
kind="neutral",
|
1289 |
-
)
|
1290 |
-
|
1291 |
-
purge_data_assets = mo.ui.button(
|
1292 |
-
label="Purge Data Assets",
|
1293 |
-
on_click=lambda _: delete_data_assets(get_data_asset_id_list.value),
|
1294 |
-
kind="danger",
|
1295 |
-
)
|
1296 |
-
|
1297 |
-
### Temporary Function Purge - Deployments
|
1298 |
-
get_deployments_button = mo.ui.button(
|
1299 |
-
label="Get Deployments Dataframe",
|
1300 |
-
on_click=lambda _: get_deployment_list(),
|
1301 |
-
kind="neutral",
|
1302 |
-
)
|
1303 |
-
|
1304 |
-
get_deployment_id_list = mo.ui.button(
|
1305 |
-
label="Turn Dataframe into List of IDs",
|
1306 |
-
on_click=lambda _: get_deployment_ids(get_deployments_button.value),
|
1307 |
-
kind="neutral",
|
1308 |
-
)
|
1309 |
-
|
1310 |
-
purge_deployments = mo.ui.button(
|
1311 |
-
label="Purge Deployments",
|
1312 |
-
on_click=lambda _: delete_deployments(get_deployment_id_list.value),
|
1313 |
-
kind="danger",
|
1314 |
-
)
|
1315 |
-
|
1316 |
-
### Repository Items Purge
|
1317 |
-
get_repository_button = mo.ui.button(
|
1318 |
-
label="Get Repository Dataframe",
|
1319 |
-
on_click=lambda _: get_repository_list(),
|
1320 |
-
kind="neutral",
|
1321 |
-
)
|
1322 |
-
|
1323 |
-
get_repository_id_list = mo.ui.button(
|
1324 |
-
label="Turn Dataframe into List of IDs",
|
1325 |
-
on_click=lambda _: get_repository_ids(get_repository_button.value),
|
1326 |
-
kind="neutral",
|
1327 |
-
)
|
1328 |
-
|
1329 |
-
purge_repository = mo.ui.button(
|
1330 |
-
label="Purge Repository Items",
|
1331 |
-
on_click=lambda _: delete_repository_items(get_repository_id_list.value),
|
1332 |
-
kind="danger",
|
1333 |
-
)
|
1334 |
-
return (
|
1335 |
-
get_data_asset_id_list,
|
1336 |
-
get_data_assets_button,
|
1337 |
-
get_deployment_id_list,
|
1338 |
-
get_deployments_button,
|
1339 |
-
get_repository_button,
|
1340 |
-
get_repository_id_list,
|
1341 |
-
purge_data_assets,
|
1342 |
-
purge_deployments,
|
1343 |
-
purge_repository,
|
1344 |
-
)
|
1345 |
-
|
1346 |
-
|
1347 |
-
if __name__ == "__main__":
|
1348 |
-
app.run()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|