Delete new_templates
Browse files
new_templates/vision_llm_text_extraction.py
DELETED
@@ -1,228 +0,0 @@
|
|
1 |
-
def extract_text_from_images_deployable():
|
2 |
-
"""
|
3 |
-
Deployable watsonx.ai function that extracts text from multiple images/PDFs using foundation models.
|
4 |
-
|
5 |
-
Expected input payload:
|
6 |
-
{
|
7 |
-
"input_data": [{
|
8 |
-
"values": [["<image_url_1>", "<image_url_2>", ...], ["<optional_extraction_prompt>"]]
|
9 |
-
}]
|
10 |
-
}
|
11 |
-
|
12 |
-
Returns:
|
13 |
-
{
|
14 |
-
"predictions": [{
|
15 |
-
"fields": ["extracted_texts"],
|
16 |
-
"values": [[["<extracted_text_1>", "<extracted_text_2>", ...]]]
|
17 |
-
}]
|
18 |
-
}
|
19 |
-
"""
|
20 |
-
|
21 |
-
import mimetypes
|
22 |
-
import base64
|
23 |
-
import requests
|
24 |
-
from urllib.parse import urlparse
|
25 |
-
import fitz
|
26 |
-
from ibm_watsonx_ai import APIClient, Credentials
|
27 |
-
from ibm_watsonx_ai.foundation_models import ModelInference
|
28 |
-
|
29 |
-
# Initialize watsonx client (these should be set as environment variables)
|
30 |
-
import os
|
31 |
-
WX_URL = os.getenv('WX_URL', "")
|
32 |
-
WX_APIKEY = os.getenv('WX_APIKEY', "")
|
33 |
-
PROJECT_ID = os.getenv('PROJECT_ID', "")
|
34 |
-
CHAT_MODEL = os.getenv('CHAT_MODEL', 'mistralai/mistral-medium-2505')
|
35 |
-
|
36 |
-
DEFAULT_EXTRACTION_PROMPT = '''Extract all text within the image in a markdown form as close as possible to the original, free of any additional outputs that are not in the text, including descriptions of the element, comments about making outputs, etc.'''
|
37 |
-
|
38 |
-
wx_credentials = Credentials(
|
39 |
-
url=WX_URL,
|
40 |
-
api_key=WX_APIKEY
|
41 |
-
)
|
42 |
-
client = APIClient(credentials=wx_credentials, project_id=PROJECT_ID)
|
43 |
-
|
44 |
-
def create_data_url(source, filename=None):
|
45 |
-
"""Create data URL from bytes, file path, or URL. Returns list for PDFs."""
|
46 |
-
|
47 |
-
if isinstance(source, str) and source.startswith(('http://', 'https://')):
|
48 |
-
content = requests.get(source).content
|
49 |
-
filename = filename or urlparse(source).path.split('/')[-1] or 'file'
|
50 |
-
elif isinstance(source, str):
|
51 |
-
with open(source, 'rb') as f:
|
52 |
-
content = f.read()
|
53 |
-
filename = filename or source
|
54 |
-
else:
|
55 |
-
content = source
|
56 |
-
if not filename:
|
57 |
-
raise ValueError("filename required for bytes input")
|
58 |
-
|
59 |
-
mime_type = mimetypes.guess_type(filename)[0] or 'application/octet-stream'
|
60 |
-
|
61 |
-
if mime_type == 'application/pdf':
|
62 |
-
doc = fitz.open(stream=content, filetype="pdf")
|
63 |
-
result = []
|
64 |
-
for page in doc:
|
65 |
-
pix = page.get_pixmap(matrix=fitz.Matrix(1.5, 1.5))
|
66 |
-
img_data = pix.tobytes("png")
|
67 |
-
encoded = base64.b64encode(img_data).decode('utf-8')
|
68 |
-
result.append(f"data:image/png;base64,{encoded}")
|
69 |
-
doc.close()
|
70 |
-
return result
|
71 |
-
|
72 |
-
encoded = base64.b64encode(content).decode('utf-8')
|
73 |
-
return f"data:{mime_type};base64,{encoded}"
|
74 |
-
|
75 |
-
def score(payload):
|
76 |
-
"""
|
77 |
-
Score function called for each prediction request.
|
78 |
-
|
79 |
-
Args:
|
80 |
-
payload: Input payload containing list of image URLs/paths and optional extraction prompt
|
81 |
-
|
82 |
-
Returns:
|
83 |
-
Dictionary with predictions containing list of extracted texts
|
84 |
-
"""
|
85 |
-
try:
|
86 |
-
# Extract input data from payload
|
87 |
-
input_values = payload.get("input_data")[0].get("values")
|
88 |
-
image_urls = input_values[0] # List of URLs
|
89 |
-
extraction_prompt = input_values[1] if len(input_values) > 1 else DEFAULT_EXTRACTION_PROMPT
|
90 |
-
|
91 |
-
# Model parameters
|
92 |
-
params = {
|
93 |
-
"temperature": 1.0,
|
94 |
-
"max_tokens": 6553,
|
95 |
-
"top_p": 1.0,
|
96 |
-
"stop": [
|
97 |
-
"</s>",
|
98 |
-
"<|end_of_text|>"
|
99 |
-
]
|
100 |
-
}
|
101 |
-
|
102 |
-
extracted_texts = []
|
103 |
-
|
104 |
-
# Process each image URL
|
105 |
-
for image_url in image_urls:
|
106 |
-
# Convert image to data URL
|
107 |
-
image_data_url = create_data_url(image_url)
|
108 |
-
|
109 |
-
# Handle PDF case (multiple pages)
|
110 |
-
if isinstance(image_data_url, list):
|
111 |
-
all_extracted_text = []
|
112 |
-
for page_num, page_url in enumerate(image_data_url):
|
113 |
-
messages = [
|
114 |
-
{
|
115 |
-
"role": "user",
|
116 |
-
"content": [
|
117 |
-
{
|
118 |
-
"type": "text",
|
119 |
-
"text": f"Page {page_num + 1}:\n{extraction_prompt}"
|
120 |
-
},
|
121 |
-
{
|
122 |
-
"type": "image_url",
|
123 |
-
"image_url": {
|
124 |
-
"url": page_url,
|
125 |
-
}
|
126 |
-
}
|
127 |
-
]
|
128 |
-
}
|
129 |
-
]
|
130 |
-
|
131 |
-
chat_model = ModelInference(api_client=client, model_id=CHAT_MODEL, params=params)
|
132 |
-
model_response = chat_model.chat(messages=messages)
|
133 |
-
page_text = model_response["choices"][0]["message"]["content"]
|
134 |
-
all_extracted_text.append(f"## Page {page_num + 1}\n\n{page_text}")
|
135 |
-
|
136 |
-
extracted_text = "\n\n".join(all_extracted_text)
|
137 |
-
else:
|
138 |
-
# Single image case
|
139 |
-
messages = [
|
140 |
-
{
|
141 |
-
"role": "user",
|
142 |
-
"content": [
|
143 |
-
{
|
144 |
-
"type": "text",
|
145 |
-
"text": extraction_prompt
|
146 |
-
},
|
147 |
-
{
|
148 |
-
"type": "image_url",
|
149 |
-
"image_url": {
|
150 |
-
"url": image_data_url,
|
151 |
-
}
|
152 |
-
}
|
153 |
-
]
|
154 |
-
}
|
155 |
-
]
|
156 |
-
|
157 |
-
chat_model = ModelInference(api_client=client, model_id=CHAT_MODEL, params=params)
|
158 |
-
model_response = chat_model.chat(messages=messages)
|
159 |
-
extracted_text = model_response["choices"][0]["message"]["content"]
|
160 |
-
|
161 |
-
extracted_texts.append(extracted_text)
|
162 |
-
|
163 |
-
# Return in required format
|
164 |
-
return {
|
165 |
-
'predictions': [{
|
166 |
-
'fields': ['extracted_texts'],
|
167 |
-
'values': [extracted_texts]
|
168 |
-
}]
|
169 |
-
}
|
170 |
-
|
171 |
-
except Exception as e:
|
172 |
-
# Return error in predictions format
|
173 |
-
return {
|
174 |
-
'predictions': [{
|
175 |
-
'fields': ['extracted_texts', 'error'],
|
176 |
-
'values': [[], str(e)]
|
177 |
-
}]
|
178 |
-
}
|
179 |
-
|
180 |
-
return score
|
181 |
-
|
182 |
-
# Create the deployable score function
|
183 |
-
score = extract_text_from_images_deployable()
|
184 |
-
|
185 |
-
|
186 |
-
input_schema_example = [
|
187 |
-
{
|
188 |
-
"id": "1",
|
189 |
-
"type": "struct",
|
190 |
-
"fields": [
|
191 |
-
{
|
192 |
-
"name": "image_urls",
|
193 |
-
"type": "array<string>",
|
194 |
-
"nullable": False,
|
195 |
-
"metadata": {
|
196 |
-
"description": "List of image/PDF URLs or file paths to process"
|
197 |
-
},
|
198 |
-
},
|
199 |
-
{
|
200 |
-
"name": "extraction_prompt",
|
201 |
-
"type": "string",
|
202 |
-
"nullable": True,
|
203 |
-
"metadata": {
|
204 |
-
"description": "Optional custom extraction prompt. Uses default if null."
|
205 |
-
},
|
206 |
-
},
|
207 |
-
],
|
208 |
-
}
|
209 |
-
]
|
210 |
-
|
211 |
-
output_schema_example = [
|
212 |
-
{
|
213 |
-
"id": "1",
|
214 |
-
"type": "struct",
|
215 |
-
"fields": [
|
216 |
-
{
|
217 |
-
"name": "extracted_texts",
|
218 |
-
"type": "array<string>",
|
219 |
-
"nullable": False,
|
220 |
-
"metadata": {
|
221 |
-
"description": "Array of extracted text strings, one per input URL in same order"
|
222 |
-
},
|
223 |
-
}
|
224 |
-
],
|
225 |
-
}
|
226 |
-
]
|
227 |
-
|
228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
new_templates/website_monitor_function_v2
DELETED
@@ -1,123 +0,0 @@
|
|
1 |
-
def website_monitor_function_v2():
|
2 |
-
import requests
|
3 |
-
import threading
|
4 |
-
import time
|
5 |
-
from datetime import datetime
|
6 |
-
from difflib import SequenceMatcher
|
7 |
-
import re
|
8 |
-
|
9 |
-
# Configuration
|
10 |
-
URL = "<add your target url here>" # Replace with your target URL
|
11 |
-
CHECK_INTERVAL = 4 # in seconds
|
12 |
-
CHANGE_THRESHOLD = 0.01 # 1% difference threshold
|
13 |
-
|
14 |
-
# Shared state variables
|
15 |
-
current_state = "Initializing..."
|
16 |
-
previous_html = None
|
17 |
-
last_check_time = None
|
18 |
-
monitor_thread = None
|
19 |
-
|
20 |
-
def extract_text_content(html):
|
21 |
-
"""Extract text content from HTML, removing tags and normalizing whitespace"""
|
22 |
-
# Remove HTML tags
|
23 |
-
text = re.sub(r'<[^>]+>', ' ', html)
|
24 |
-
# Normalize whitespace
|
25 |
-
text = ' '.join(text.split())
|
26 |
-
return text.lower().strip()
|
27 |
-
|
28 |
-
def calculate_text_difference(text1, text2):
|
29 |
-
"""Calculate percentage difference between two text strings"""
|
30 |
-
if not text1 and not text2:
|
31 |
-
return 0.0
|
32 |
-
if not text1 or not text2:
|
33 |
-
return 1.0
|
34 |
-
|
35 |
-
similarity = SequenceMatcher(None, text1, text2).ratio()
|
36 |
-
sim_score = 1.0 - similarity
|
37 |
-
return sim_score
|
38 |
-
|
39 |
-
def fetch_and_compare():
|
40 |
-
"""Fetch URL content and compare with previous version"""
|
41 |
-
nonlocal current_state, previous_html, last_check_time
|
42 |
-
|
43 |
-
try:
|
44 |
-
response = requests.get(URL, timeout=30)
|
45 |
-
response.raise_for_status()
|
46 |
-
current_html = response.text
|
47 |
-
current_time = datetime.now()
|
48 |
-
|
49 |
-
if previous_html is None:
|
50 |
-
# First run
|
51 |
-
previous_html = current_html
|
52 |
-
last_check_time = current_time
|
53 |
-
current_state = f"Initial check completed at {current_time.strftime('%Y-%m-%d %H:%M:%S')}"
|
54 |
-
return
|
55 |
-
|
56 |
-
# Extract and compare text content
|
57 |
-
previous_text = extract_text_content(previous_html)
|
58 |
-
current_text = extract_text_content(current_html)
|
59 |
-
|
60 |
-
difference_ratio = calculate_text_difference(previous_text, current_text)
|
61 |
-
|
62 |
-
if difference_ratio >= CHANGE_THRESHOLD:
|
63 |
-
current_state = f"Changes occurred between {last_check_time.strftime('%Y-%m-%d %H:%M:%S')} - {current_time.strftime('%Y-%m-%d %H:%M:%S')}"
|
64 |
-
previous_html = current_html
|
65 |
-
else:
|
66 |
-
current_state = f"No changes occurred since {last_check_time.strftime('%Y-%m-%d %H:%M:%S')}"
|
67 |
-
|
68 |
-
last_check_time = current_time
|
69 |
-
|
70 |
-
except requests.RequestException as e:
|
71 |
-
current_state = f"Error fetching URL at {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}: {str(e)}"
|
72 |
-
except Exception as e:
|
73 |
-
current_state = f"Unexpected error at {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}: {str(e)}"
|
74 |
-
|
75 |
-
def monitor_loop():
|
76 |
-
"""Continuous monitoring loop"""
|
77 |
-
while True:
|
78 |
-
fetch_and_compare()
|
79 |
-
time.sleep(CHECK_INTERVAL)
|
80 |
-
|
81 |
-
def start_monitoring():
|
82 |
-
"""Start the monitoring thread if not already running"""
|
83 |
-
nonlocal monitor_thread
|
84 |
-
if monitor_thread is None or not monitor_thread.is_alive():
|
85 |
-
monitor_thread = threading.Thread(target=monitor_loop, daemon=True)
|
86 |
-
monitor_thread.start()
|
87 |
-
|
88 |
-
# Start monitoring when function is deployed
|
89 |
-
start_monitoring()
|
90 |
-
|
91 |
-
def score(input_data):
|
92 |
-
"""Score function that returns current monitoring state"""
|
93 |
-
try:
|
94 |
-
# Extract any parameters from input if needed (optional)
|
95 |
-
# For now, just return current state
|
96 |
-
|
97 |
-
score_response = {
|
98 |
-
'predictions': [{
|
99 |
-
'fields': ['monitoring_state', 'check_interval_seconds', 'target_url', 'last_updated'],
|
100 |
-
'values': [[
|
101 |
-
current_state,
|
102 |
-
CHECK_INTERVAL,
|
103 |
-
URL,
|
104 |
-
datetime.now().strftime('%Y-%m-%d %H:%M:%S')
|
105 |
-
]]
|
106 |
-
}]
|
107 |
-
}
|
108 |
-
|
109 |
-
return score_response
|
110 |
-
|
111 |
-
except Exception as e:
|
112 |
-
error_response = {
|
113 |
-
'predictions': [{
|
114 |
-
'fields': ['error'],
|
115 |
-
'values': [[f"Error in score function: {str(e)}"]]
|
116 |
-
}]
|
117 |
-
}
|
118 |
-
return error_response
|
119 |
-
|
120 |
-
return score
|
121 |
-
|
122 |
-
# Create the deployable score function
|
123 |
-
score = website_monitor_function_v2()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|