Upload 3 files
Browse files
helper_functions/debug_helper_functions.py
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
def debug_element(obj):
|
| 2 |
+
"""Get all attributes and their string representations from an object using dir()."""
|
| 3 |
+
import copy
|
| 4 |
+
try:
|
| 5 |
+
# Create a deep copy of the object if possible
|
| 6 |
+
obj_copy = copy.deepcopy(obj)
|
| 7 |
+
except:
|
| 8 |
+
try:
|
| 9 |
+
# If deepcopy fails, try shallow copy
|
| 10 |
+
obj_copy = copy.copy(obj)
|
| 11 |
+
except:
|
| 12 |
+
# If copying fails completely, use the original object
|
| 13 |
+
obj_copy = obj
|
| 14 |
+
|
| 15 |
+
attributes = dir(obj_copy)
|
| 16 |
+
results = []
|
| 17 |
+
|
| 18 |
+
for attr in attributes:
|
| 19 |
+
try:
|
| 20 |
+
# Get the attribute value from the copy
|
| 21 |
+
value = getattr(obj_copy, attr)
|
| 22 |
+
|
| 23 |
+
# Handle callable attributes
|
| 24 |
+
if callable(value):
|
| 25 |
+
try:
|
| 26 |
+
# Try to call the method without arguments
|
| 27 |
+
result = value()
|
| 28 |
+
str_value = f"<callable result: {str(result)}>"
|
| 29 |
+
except Exception as call_error:
|
| 30 |
+
# If calling fails, just record it's a callable
|
| 31 |
+
str_value = f"<callable: {type(value).__name__} - error when called: {str(call_error)}>"
|
| 32 |
+
else:
|
| 33 |
+
str_value = str(value)
|
| 34 |
+
|
| 35 |
+
results.append(f"{attr}: {str_value}")
|
| 36 |
+
except Exception as e:
|
| 37 |
+
results.append(f"{attr}: <error accessing: {str(e)}>")
|
| 38 |
+
|
| 39 |
+
return results
|
helper_functions/helper_functions.py
ADDED
|
@@ -0,0 +1,496 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from ibm_watsonx_ai import APIClient, Credentials
|
| 2 |
+
from typing import Dict, Optional, List, Union, Any, Set
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import marimo as mo
|
| 5 |
+
import json
|
| 6 |
+
import glob
|
| 7 |
+
import io
|
| 8 |
+
import os
|
| 9 |
+
|
| 10 |
+
def get_cred_value(key, creds_var_name="baked_in_creds", default=""):
|
| 11 |
+
"""
|
| 12 |
+
Helper function to safely get a value from a credentials dictionary.
|
| 13 |
+
|
| 14 |
+
Searches for credentials in:
|
| 15 |
+
1. Global variables with the specified variable name
|
| 16 |
+
2. Imported modules containing the specified variable name
|
| 17 |
+
|
| 18 |
+
Args:
|
| 19 |
+
key: The key to look up in the credentials dictionary.
|
| 20 |
+
creds_var_name: The variable name of the credentials dictionary.
|
| 21 |
+
default: The default value to return if the key is not found.
|
| 22 |
+
Returns:
|
| 23 |
+
The value from the credentials dictionary if it exists and contains the key,
|
| 24 |
+
otherwise returns the default value.
|
| 25 |
+
"""
|
| 26 |
+
# Check if the credentials variable exists in globals
|
| 27 |
+
if creds_var_name in globals():
|
| 28 |
+
creds_dict = globals()[creds_var_name]
|
| 29 |
+
if isinstance(creds_dict, dict) and key in creds_dict:
|
| 30 |
+
return creds_dict[key]
|
| 31 |
+
|
| 32 |
+
# Check if credentials are in an imported module
|
| 33 |
+
import sys
|
| 34 |
+
for module_name, module_obj in sys.modules.items():
|
| 35 |
+
if hasattr(module_obj, creds_var_name):
|
| 36 |
+
creds_dict = getattr(module_obj, creds_var_name)
|
| 37 |
+
if isinstance(creds_dict, dict) and key in creds_dict:
|
| 38 |
+
return creds_dict[key]
|
| 39 |
+
|
| 40 |
+
return default
|
| 41 |
+
|
| 42 |
+
def get_key_by_value(dictionary, value):
|
| 43 |
+
for key, val in dictionary.items():
|
| 44 |
+
if val == value:
|
| 45 |
+
return key
|
| 46 |
+
return None
|
| 47 |
+
|
| 48 |
+
def markdown_spacing(number):
|
| 49 |
+
"""Convert a number to that many ' ' characters."""
|
| 50 |
+
return ' ' * number
|
| 51 |
+
|
| 52 |
+
def wrap_with_spaces(text_to_wrap, prefix_spaces=2, suffix_spaces=2):
|
| 53 |
+
"""Wrap text with non-breaking spaces on either side."""
|
| 54 |
+
prefix = markdown_spacing(prefix_spaces) if prefix_spaces > 0 else ""
|
| 55 |
+
suffix = markdown_spacing(suffix_spaces) if suffix_spaces > 0 else ""
|
| 56 |
+
return f"{prefix}{text_to_wrap}{suffix}"
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def load_file_dataframe(file, file_extension, sheet_selector=None, excel_data=None, header_row=0):
|
| 60 |
+
"""
|
| 61 |
+
Load a dataframe from an uploaded file with customizable header and row skipping.
|
| 62 |
+
|
| 63 |
+
Parameters:
|
| 64 |
+
-----------
|
| 65 |
+
file : marimo.ui.file object
|
| 66 |
+
The file upload component containing the file data
|
| 67 |
+
file_extension : str
|
| 68 |
+
The extension of the uploaded file (.xlsx, .xls, .csv, .json)
|
| 69 |
+
sheet_selector : marimo.ui.dropdown, optional
|
| 70 |
+
Dropdown component for selecting Excel sheets
|
| 71 |
+
excel_data : BytesIO, optional
|
| 72 |
+
BytesIO object containing Excel data
|
| 73 |
+
header_row : int, optional
|
| 74 |
+
Row index to use as column headers (0-based). Default is 0 (first row).
|
| 75 |
+
Use None to have pandas generate default column names.
|
| 76 |
+
|
| 77 |
+
Returns:
|
| 78 |
+
--------
|
| 79 |
+
tuple
|
| 80 |
+
(pandas.DataFrame, list) - The loaded dataframe and list of column names
|
| 81 |
+
"""
|
| 82 |
+
|
| 83 |
+
dataframe = pd.DataFrame([])
|
| 84 |
+
column_names = []
|
| 85 |
+
|
| 86 |
+
if file.contents():
|
| 87 |
+
# Handle different file types
|
| 88 |
+
if file_extension in ['.xlsx', '.xls'] and sheet_selector is not None and sheet_selector.value:
|
| 89 |
+
# For Excel files - now we can safely access sheet_selector.value
|
| 90 |
+
excel_data.seek(0) # Reset buffer position
|
| 91 |
+
dataframe = pd.read_excel(
|
| 92 |
+
excel_data,
|
| 93 |
+
sheet_name=sheet_selector.value,
|
| 94 |
+
header=header_row,
|
| 95 |
+
engine="openpyxl" if file_extension == '.xlsx' else "xlrd"
|
| 96 |
+
)
|
| 97 |
+
column_names = list(dataframe.columns)
|
| 98 |
+
elif file_extension == '.csv':
|
| 99 |
+
# For CSV files
|
| 100 |
+
csv_data = io.StringIO(file.contents().decode('utf-8'))
|
| 101 |
+
dataframe = pd.read_csv(csv_data, header=header_row)
|
| 102 |
+
column_names = list(dataframe.columns)
|
| 103 |
+
elif file_extension == '.json':
|
| 104 |
+
# For JSON files
|
| 105 |
+
try:
|
| 106 |
+
json_data = json.loads(file.contents().decode('utf-8'))
|
| 107 |
+
# Handle different JSON structures
|
| 108 |
+
if isinstance(json_data, list):
|
| 109 |
+
dataframe = pd.DataFrame(json_data)
|
| 110 |
+
elif isinstance(json_data, dict):
|
| 111 |
+
# If it's a dictionary with nested structures, try to normalize it
|
| 112 |
+
if any(isinstance(v, (dict, list)) for v in json_data.values()):
|
| 113 |
+
# For nested JSON with consistent structure
|
| 114 |
+
dataframe = pd.json_normalize(json_data)
|
| 115 |
+
else:
|
| 116 |
+
# For flat JSON
|
| 117 |
+
dataframe = pd.DataFrame([json_data])
|
| 118 |
+
column_names = list(dataframe.columns)
|
| 119 |
+
except Exception as e:
|
| 120 |
+
print(f"Error parsing JSON: {e}")
|
| 121 |
+
|
| 122 |
+
return dataframe, column_names
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def create_parameter_table(input_list, column_name="Active Options", label="Select the Parameters to set to Active",
|
| 126 |
+
selection_type="multi-cell", text_justify="center"):
|
| 127 |
+
"""
|
| 128 |
+
Creates a marimo table for parameter selection.
|
| 129 |
+
|
| 130 |
+
Args:
|
| 131 |
+
input_list: List of parameter names to display in the table
|
| 132 |
+
column_name: Name of the column (default: "Active Options")
|
| 133 |
+
label: Label for the table (default: "Select the Parameters to set to Active:")
|
| 134 |
+
selection_type: Selection type, either "single-cell" or "multi-cell" (default: "multi-cell")
|
| 135 |
+
text_justify: Text justification for the column (default: "center")
|
| 136 |
+
|
| 137 |
+
Returns:
|
| 138 |
+
A marimo table configured for parameter selection
|
| 139 |
+
"""
|
| 140 |
+
import marimo as mo
|
| 141 |
+
|
| 142 |
+
# Validate selection type
|
| 143 |
+
if selection_type not in ["single-cell", "multi-cell"]:
|
| 144 |
+
raise ValueError("selection_type must be either 'single-cell' or 'multi-cell'")
|
| 145 |
+
|
| 146 |
+
# Validate text justification
|
| 147 |
+
if text_justify not in ["left", "center", "right"]:
|
| 148 |
+
raise ValueError("text_justify must be one of: 'left', 'center', 'right'")
|
| 149 |
+
|
| 150 |
+
# Create the table
|
| 151 |
+
parameter_table = mo.ui.table(
|
| 152 |
+
label=f"**{label}**",
|
| 153 |
+
data={column_name: input_list},
|
| 154 |
+
selection=selection_type,
|
| 155 |
+
text_justify_columns={column_name: text_justify}
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
return parameter_table
|
| 159 |
+
|
| 160 |
+
def get_cell_values(parameter_options):
|
| 161 |
+
"""
|
| 162 |
+
Extract active parameter values from a mo.ui.table.
|
| 163 |
+
|
| 164 |
+
Args:
|
| 165 |
+
parameter_options: A mo.ui.table with cell selection enabled
|
| 166 |
+
|
| 167 |
+
Returns:
|
| 168 |
+
Dictionary mapping parameter names to boolean values (True/False)
|
| 169 |
+
"""
|
| 170 |
+
# Get all parameter names from the table data
|
| 171 |
+
all_params = set()
|
| 172 |
+
|
| 173 |
+
# Use the data property to get all options from the table
|
| 174 |
+
if hasattr(parameter_options, 'data'):
|
| 175 |
+
table_data = parameter_options.data
|
| 176 |
+
|
| 177 |
+
# Handle DataFrame-like structure
|
| 178 |
+
if hasattr(table_data, 'shape') and hasattr(table_data, 'iloc'):
|
| 179 |
+
for i in range(table_data.shape[0]):
|
| 180 |
+
# Get value from first column
|
| 181 |
+
if table_data.shape[1] > 0:
|
| 182 |
+
param = table_data.iloc[i, 0]
|
| 183 |
+
if param and isinstance(param, str):
|
| 184 |
+
all_params.add(param)
|
| 185 |
+
|
| 186 |
+
# Handle dict structure (common in marimo tables)
|
| 187 |
+
elif isinstance(table_data, dict):
|
| 188 |
+
# Get the first column's values
|
| 189 |
+
if len(table_data) > 0:
|
| 190 |
+
col_name = next(iter(table_data))
|
| 191 |
+
for param in table_data[col_name]:
|
| 192 |
+
if param and isinstance(param, str):
|
| 193 |
+
all_params.add(param)
|
| 194 |
+
|
| 195 |
+
# Create result dictionary with all parameters set to False by default
|
| 196 |
+
result = {param: False for param in all_params}
|
| 197 |
+
|
| 198 |
+
# Get the selected cells
|
| 199 |
+
if hasattr(parameter_options, 'value') and parameter_options.value is not None:
|
| 200 |
+
selected_cells = parameter_options.value
|
| 201 |
+
|
| 202 |
+
# Process selected cells
|
| 203 |
+
for cell in selected_cells:
|
| 204 |
+
if hasattr(cell, 'value') and cell.value in result:
|
| 205 |
+
result[cell.value] = True
|
| 206 |
+
elif isinstance(cell, dict) and 'value' in cell and cell['value'] in result:
|
| 207 |
+
result[cell['value']] = True
|
| 208 |
+
elif isinstance(cell, str) and cell in result:
|
| 209 |
+
result[cell] = True
|
| 210 |
+
|
| 211 |
+
return result
|
| 212 |
+
|
| 213 |
+
def convert_table_to_json_docs(df, selected_columns=None):
|
| 214 |
+
"""
|
| 215 |
+
Convert a pandas DataFrame or dictionary to a list of JSON documents.
|
| 216 |
+
Dynamically includes columns based on user selection.
|
| 217 |
+
Column names are standardized to lowercase with underscores instead of spaces
|
| 218 |
+
and special characters removed.
|
| 219 |
+
|
| 220 |
+
Args:
|
| 221 |
+
df: The DataFrame or dictionary to process
|
| 222 |
+
selected_columns: List of column names to include in the output documents
|
| 223 |
+
|
| 224 |
+
Returns:
|
| 225 |
+
list: A list of dictionaries, each representing a row as a JSON document
|
| 226 |
+
"""
|
| 227 |
+
import pandas as pd
|
| 228 |
+
import re
|
| 229 |
+
|
| 230 |
+
def standardize_key(key):
|
| 231 |
+
"""Convert a column name to lowercase with underscores instead of spaces and no special characters"""
|
| 232 |
+
if not isinstance(key, str):
|
| 233 |
+
return str(key).lower()
|
| 234 |
+
# Replace spaces with underscores and convert to lowercase
|
| 235 |
+
key = key.lower().replace(' ', '_')
|
| 236 |
+
# Remove special characters (keeping alphanumeric and underscores)
|
| 237 |
+
return re.sub(r'[^\w]', '', key)
|
| 238 |
+
|
| 239 |
+
# Handle case when input is a dictionary
|
| 240 |
+
if isinstance(df, dict):
|
| 241 |
+
# Filter the dictionary to include only selected columns
|
| 242 |
+
if selected_columns:
|
| 243 |
+
return [{standardize_key(k): df.get(k, None) for k in selected_columns}]
|
| 244 |
+
else:
|
| 245 |
+
# If no columns selected, return all key-value pairs with standardized keys
|
| 246 |
+
return [{standardize_key(k): v for k, v in df.items()}]
|
| 247 |
+
|
| 248 |
+
# Handle case when df is None
|
| 249 |
+
if df is None:
|
| 250 |
+
return []
|
| 251 |
+
|
| 252 |
+
# Ensure df is a DataFrame
|
| 253 |
+
if not isinstance(df, pd.DataFrame):
|
| 254 |
+
try:
|
| 255 |
+
df = pd.DataFrame(df)
|
| 256 |
+
except:
|
| 257 |
+
return [] # Return empty list if conversion fails
|
| 258 |
+
|
| 259 |
+
# Now check if DataFrame is empty
|
| 260 |
+
if df.empty:
|
| 261 |
+
return []
|
| 262 |
+
|
| 263 |
+
# Process selected_columns if it's a dictionary of true/false values
|
| 264 |
+
if isinstance(selected_columns, dict):
|
| 265 |
+
# Extract keys where value is True
|
| 266 |
+
selected_columns = [col for col, include in selected_columns.items() if include]
|
| 267 |
+
|
| 268 |
+
# If no columns are specifically selected, use all available columns
|
| 269 |
+
if not selected_columns or not isinstance(selected_columns, list) or len(selected_columns) == 0:
|
| 270 |
+
selected_columns = list(df.columns)
|
| 271 |
+
|
| 272 |
+
# Determine which columns exist in the DataFrame
|
| 273 |
+
available_columns = []
|
| 274 |
+
columns_lower = {col.lower(): col for col in df.columns if isinstance(col, str)}
|
| 275 |
+
|
| 276 |
+
for col in selected_columns:
|
| 277 |
+
if col in df.columns:
|
| 278 |
+
available_columns.append(col)
|
| 279 |
+
elif isinstance(col, str) and col.lower() in columns_lower:
|
| 280 |
+
available_columns.append(columns_lower[col.lower()])
|
| 281 |
+
|
| 282 |
+
# If no valid columns found, return empty list
|
| 283 |
+
if not available_columns:
|
| 284 |
+
return []
|
| 285 |
+
|
| 286 |
+
# Process rows
|
| 287 |
+
json_docs = []
|
| 288 |
+
for _, row in df.iterrows():
|
| 289 |
+
doc = {}
|
| 290 |
+
for col in available_columns:
|
| 291 |
+
value = row[col]
|
| 292 |
+
# Standardize the column name when adding to document
|
| 293 |
+
std_col = standardize_key(col)
|
| 294 |
+
doc[std_col] = None if pd.isna(value) else value
|
| 295 |
+
json_docs.append(doc)
|
| 296 |
+
|
| 297 |
+
return json_docs
|
| 298 |
+
|
| 299 |
+
def filter_models_by_function(resources, function_type="prompt_chat"):
|
| 300 |
+
"""
|
| 301 |
+
Filter model IDs from resources list that have a specific function type
|
| 302 |
+
|
| 303 |
+
Args:
|
| 304 |
+
resources (list): List of model resource objects
|
| 305 |
+
function_type (str, optional): Function type to filter by. Defaults to "prompt_chat".
|
| 306 |
+
|
| 307 |
+
Returns:
|
| 308 |
+
list: List of model IDs that have the specified function
|
| 309 |
+
"""
|
| 310 |
+
filtered_model_ids = []
|
| 311 |
+
|
| 312 |
+
if not resources or not isinstance(resources, list):
|
| 313 |
+
return filtered_model_ids
|
| 314 |
+
|
| 315 |
+
for model in resources:
|
| 316 |
+
# Check if the model has a functions attribute
|
| 317 |
+
if "functions" in model and isinstance(model["functions"], list):
|
| 318 |
+
# Check if any function has the matching id
|
| 319 |
+
has_function = any(
|
| 320 |
+
func.get("id") == function_type
|
| 321 |
+
for func in model["functions"]
|
| 322 |
+
if isinstance(func, dict)
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
if has_function and "model_id" in model:
|
| 326 |
+
filtered_model_ids.append(model["model_id"])
|
| 327 |
+
|
| 328 |
+
return filtered_model_ids
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
def get_model_selection_table(client=None, model_type="all", filter_functionality=None, selection_mode="single-cell"):
|
| 332 |
+
"""
|
| 333 |
+
Creates and displays a table for model selection based on specified parameters.
|
| 334 |
+
|
| 335 |
+
Args:
|
| 336 |
+
client: The client object for API calls. If None, returns default models.
|
| 337 |
+
model_type (str): Type of models to display. Options: "all", "chat", "embedding".
|
| 338 |
+
filter_functionality (str, optional): Filter models by functionality type.
|
| 339 |
+
Options include: "image_chat", "text_chat", "autoai_rag",
|
| 340 |
+
"text_generation", "multilingual", etc.
|
| 341 |
+
selection_mode (str): Mode for selecting table entries. Options: "single", "single-cell".
|
| 342 |
+
Defaults to "single-cell".
|
| 343 |
+
|
| 344 |
+
Returns:
|
| 345 |
+
The selected model ID from the displayed table.
|
| 346 |
+
"""
|
| 347 |
+
# Default model list if client is None
|
| 348 |
+
default_models = ['mistralai/mistral-large']
|
| 349 |
+
|
| 350 |
+
if client is None:
|
| 351 |
+
# If no client, use default models
|
| 352 |
+
available_models = default_models
|
| 353 |
+
selection = mo.ui.table(
|
| 354 |
+
available_models,
|
| 355 |
+
selection="single",
|
| 356 |
+
label="Select a model to use.",
|
| 357 |
+
page_size=30,
|
| 358 |
+
)
|
| 359 |
+
return selection
|
| 360 |
+
|
| 361 |
+
# Get appropriate model specs based on model_type
|
| 362 |
+
if model_type == "chat":
|
| 363 |
+
model_specs = client.foundation_models.get_chat_model_specs()
|
| 364 |
+
elif model_type == "embedding":
|
| 365 |
+
model_specs = client.foundation_models.get_embeddings_model_specs()
|
| 366 |
+
else:
|
| 367 |
+
model_specs = client.foundation_models.get_model_specs()
|
| 368 |
+
|
| 369 |
+
# Extract resources from model specs
|
| 370 |
+
resources = model_specs.get("resources", [])
|
| 371 |
+
|
| 372 |
+
# Filter by functionality if specified
|
| 373 |
+
if filter_functionality and resources:
|
| 374 |
+
model_id_list = filter_models_by_function(resources, filter_functionality)
|
| 375 |
+
else:
|
| 376 |
+
# Create list of model IDs if no filtering
|
| 377 |
+
model_id_list = [resource["model_id"] for resource in resources]
|
| 378 |
+
|
| 379 |
+
# If no models available after filtering, use defaults
|
| 380 |
+
if not model_id_list:
|
| 381 |
+
model_id_list = default_models
|
| 382 |
+
|
| 383 |
+
# Create and display selection table
|
| 384 |
+
model_selector = mo.ui.table(
|
| 385 |
+
model_id_list,
|
| 386 |
+
selection=selection_mode,
|
| 387 |
+
label="Select a model to use.",
|
| 388 |
+
page_size=30,
|
| 389 |
+
initial_selection = [("0", "value")] if selection_mode == "single-cell" else [0]
|
| 390 |
+
### For single-cell it must have [("<row_nr as a string>","column_name string")] to work as initial value
|
| 391 |
+
)
|
| 392 |
+
|
| 393 |
+
return model_selector, resources, model_id_list
|
| 394 |
+
|
| 395 |
+
def _enforce_model_selection(model_selection, model_id_list):
|
| 396 |
+
# If nothing is selected (empty list) or value is None
|
| 397 |
+
if not model_selection.value:
|
| 398 |
+
# Reset to first item
|
| 399 |
+
model = 0
|
| 400 |
+
model_selection._value = model_id_list[model]
|
| 401 |
+
print(model_selection.value)
|
| 402 |
+
return model_selection.value
|
| 403 |
+
|
| 404 |
+
def update_max_tokens_limit(model_selection, resources, model_id_list):
|
| 405 |
+
# Default value
|
| 406 |
+
default_max_tokens = 4096
|
| 407 |
+
|
| 408 |
+
try:
|
| 409 |
+
# Check if we have a selection and resources
|
| 410 |
+
if model_selection.value is None or not hasattr(model_selection, 'value'):
|
| 411 |
+
print("No model selection or selection has no value")
|
| 412 |
+
return default_max_tokens
|
| 413 |
+
|
| 414 |
+
if not resources or not isinstance(resources, list) or len(resources) == 0:
|
| 415 |
+
print("Resources is empty or not a list")
|
| 416 |
+
return default_max_tokens
|
| 417 |
+
|
| 418 |
+
# Get the model ID - handle both index selection and direct string selection
|
| 419 |
+
selected_value = model_selection.value
|
| 420 |
+
print(f"Raw selection value: {selected_value}")
|
| 421 |
+
|
| 422 |
+
# If it's an array with indices
|
| 423 |
+
if isinstance(selected_value, list) and len(selected_value) > 0:
|
| 424 |
+
if isinstance(selected_value[0], int) and 0 <= selected_value[0] < len(model_id_list):
|
| 425 |
+
selected_model_id = model_id_list[selected_value[0]]
|
| 426 |
+
else:
|
| 427 |
+
selected_model_id = str(selected_value[0]) # Convert to string if needed
|
| 428 |
+
else:
|
| 429 |
+
selected_model_id = str(selected_value) # Direct value
|
| 430 |
+
|
| 431 |
+
print(f"Selected model ID: {selected_model_id}")
|
| 432 |
+
|
| 433 |
+
# Find the model
|
| 434 |
+
for model in resources:
|
| 435 |
+
model_id = model.get("model_id")
|
| 436 |
+
if model_id == selected_model_id:
|
| 437 |
+
if "model_limits" in model and "max_output_tokens" in model["model_limits"]:
|
| 438 |
+
return model["model_limits"]["max_output_tokens"]
|
| 439 |
+
break
|
| 440 |
+
|
| 441 |
+
except Exception as e:
|
| 442 |
+
print(f"Error: {e}")
|
| 443 |
+
|
| 444 |
+
return default_max_tokens
|
| 445 |
+
|
| 446 |
+
|
| 447 |
+
def load_templates(
|
| 448 |
+
folder_path: str,
|
| 449 |
+
file_extensions: Optional[List[str]] = None,
|
| 450 |
+
strip_whitespace: bool = True
|
| 451 |
+
) -> Dict[str, str]:
|
| 452 |
+
"""
|
| 453 |
+
Load template files from a specified folder into a dictionary.
|
| 454 |
+
|
| 455 |
+
Args:
|
| 456 |
+
folder_path: Path to the folder containing template files
|
| 457 |
+
file_extensions: List of file extensions to include (default: ['.txt', '.md'])
|
| 458 |
+
strip_whitespace: Whether to strip leading/trailing whitespace from templates (default: True)
|
| 459 |
+
|
| 460 |
+
Returns:
|
| 461 |
+
Dictionary with filename (without extension) as key and file content as value
|
| 462 |
+
"""
|
| 463 |
+
# Default extensions if none provided
|
| 464 |
+
if file_extensions is None:
|
| 465 |
+
file_extensions = ['.txt', '.md']
|
| 466 |
+
|
| 467 |
+
# Ensure extensions start with a dot
|
| 468 |
+
file_extensions = [ext if ext.startswith('.') else f'.{ext}' for ext in file_extensions]
|
| 469 |
+
|
| 470 |
+
templates = {"empty": " "} # Default empty template
|
| 471 |
+
|
| 472 |
+
# Create glob patterns for each extension
|
| 473 |
+
patterns = [os.path.join(folder_path, f'*{ext}') for ext in file_extensions]
|
| 474 |
+
|
| 475 |
+
# Find all matching files
|
| 476 |
+
for pattern in patterns:
|
| 477 |
+
for file_path in glob.glob(pattern):
|
| 478 |
+
try:
|
| 479 |
+
# Extract filename without extension to use as key
|
| 480 |
+
filename = os.path.basename(file_path)
|
| 481 |
+
template_name = os.path.splitext(filename)[0]
|
| 482 |
+
|
| 483 |
+
# Read file content
|
| 484 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
| 485 |
+
content = file.read()
|
| 486 |
+
|
| 487 |
+
# Strip whitespace if specified
|
| 488 |
+
if strip_whitespace:
|
| 489 |
+
content = content.strip()
|
| 490 |
+
|
| 491 |
+
templates[template_name] = content
|
| 492 |
+
|
| 493 |
+
except Exception as e:
|
| 494 |
+
print(f"Error loading template from {file_path}: {str(e)}")
|
| 495 |
+
|
| 496 |
+
return templates
|
helper_functions/table_helper_functions.py
ADDED
|
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
def process_with_llm(fields_to_process, prompt_template, inf_model, params, batch_size=10):
|
| 3 |
+
"""
|
| 4 |
+
Process documents with LLM using a prompt template with dynamic field mapping.
|
| 5 |
+
Uses template fields to extract values from pre-standardized document fields.
|
| 6 |
+
|
| 7 |
+
Args:
|
| 8 |
+
fields_to_process (list): List of document dictionaries to process
|
| 9 |
+
prompt_template (str): Template with {field_name} placeholders matching keys in documents
|
| 10 |
+
inf_model: The inference model instance to use for generation
|
| 11 |
+
params: Parameters to pass to the inference model
|
| 12 |
+
batch_size (int): Number of documents to process per batch
|
| 13 |
+
|
| 14 |
+
Returns:
|
| 15 |
+
list: Processed results from the LLM
|
| 16 |
+
"""
|
| 17 |
+
import time
|
| 18 |
+
import re
|
| 19 |
+
|
| 20 |
+
# Safety check for inputs
|
| 21 |
+
if not fields_to_process or not inf_model:
|
| 22 |
+
print("Missing required inputs")
|
| 23 |
+
return []
|
| 24 |
+
|
| 25 |
+
# Handle case where prompt_template is a dictionary (from UI components)
|
| 26 |
+
if isinstance(prompt_template, dict) and 'value' in prompt_template:
|
| 27 |
+
prompt_template = prompt_template['value']
|
| 28 |
+
elif not isinstance(prompt_template, str):
|
| 29 |
+
print(f"Invalid prompt template type: {type(prompt_template)}, expected string")
|
| 30 |
+
return []
|
| 31 |
+
|
| 32 |
+
# Extract field names from the prompt template using regex
|
| 33 |
+
# This finds all strings between curly braces
|
| 34 |
+
field_pattern = r'\{([^{}]+)\}'
|
| 35 |
+
template_fields = re.findall(field_pattern, prompt_template)
|
| 36 |
+
|
| 37 |
+
if not template_fields:
|
| 38 |
+
print("No field placeholders found in template")
|
| 39 |
+
return []
|
| 40 |
+
|
| 41 |
+
# Create formatted prompts from the documents
|
| 42 |
+
formatted_prompts = []
|
| 43 |
+
for doc in fields_to_process:
|
| 44 |
+
try:
|
| 45 |
+
# Create a dictionary of field values to substitute
|
| 46 |
+
field_values = {}
|
| 47 |
+
|
| 48 |
+
for field in template_fields:
|
| 49 |
+
# Try direct match first
|
| 50 |
+
if field in doc:
|
| 51 |
+
field_values[field] = doc[field] if doc[field] is not None else ""
|
| 52 |
+
# If field contains periods (e.g., "data.title"), evaluate it
|
| 53 |
+
elif '.' in field:
|
| 54 |
+
try:
|
| 55 |
+
# Build a safe evaluation string
|
| 56 |
+
parts = field.split('.')
|
| 57 |
+
value = doc
|
| 58 |
+
for part in parts:
|
| 59 |
+
if isinstance(value, dict) and part in value:
|
| 60 |
+
value = value[part]
|
| 61 |
+
else:
|
| 62 |
+
value = None
|
| 63 |
+
break
|
| 64 |
+
field_values[field] = value if value is not None else ""
|
| 65 |
+
except:
|
| 66 |
+
field_values[field] = ""
|
| 67 |
+
else:
|
| 68 |
+
# Default to empty string if field not found
|
| 69 |
+
field_values[field] = ""
|
| 70 |
+
|
| 71 |
+
# Handle None values at the top level to ensure formatting works
|
| 72 |
+
for key in field_values:
|
| 73 |
+
if field_values[key] is None:
|
| 74 |
+
field_values[key] = ""
|
| 75 |
+
|
| 76 |
+
# Format the prompt with all available fields
|
| 77 |
+
prompt = prompt_template.format(**field_values)
|
| 78 |
+
formatted_prompts.append(prompt)
|
| 79 |
+
|
| 80 |
+
except Exception as e:
|
| 81 |
+
print(f"Error formatting prompt: {str(e)}")
|
| 82 |
+
print(f"Field values: {field_values}")
|
| 83 |
+
continue
|
| 84 |
+
|
| 85 |
+
# Return empty list if no valid prompts
|
| 86 |
+
if not formatted_prompts:
|
| 87 |
+
print("No valid prompts generated")
|
| 88 |
+
return []
|
| 89 |
+
|
| 90 |
+
# Print a sample of the formatted prompts for debugging
|
| 91 |
+
if formatted_prompts:
|
| 92 |
+
print(f"Sample formatted prompt: {formatted_prompts[0][:200]}...")
|
| 93 |
+
|
| 94 |
+
# Split into batches
|
| 95 |
+
batches = [formatted_prompts[i:i + batch_size] for i in range(0, len(formatted_prompts), batch_size)]
|
| 96 |
+
|
| 97 |
+
results = []
|
| 98 |
+
|
| 99 |
+
# Process each batch
|
| 100 |
+
for i, batch in enumerate(batches):
|
| 101 |
+
start_time = time.time()
|
| 102 |
+
|
| 103 |
+
try:
|
| 104 |
+
# Use the provided inference model to generate responses
|
| 105 |
+
print(f"Sending batch {i+1} of {len(batches)} to model")
|
| 106 |
+
|
| 107 |
+
# Call the inference model with the batch of prompts and params
|
| 108 |
+
batch_results = inf_model.generate_text(prompt=batch, params=params)
|
| 109 |
+
|
| 110 |
+
results.extend(batch_results)
|
| 111 |
+
|
| 112 |
+
except Exception as e:
|
| 113 |
+
print(f"Error in batch {i+1}: {str(e)}")
|
| 114 |
+
continue
|
| 115 |
+
|
| 116 |
+
end_time = time.time()
|
| 117 |
+
inference_time = end_time - start_time
|
| 118 |
+
print(f"Inference time for Batch {i+1}: {inference_time:.2f} seconds")
|
| 119 |
+
|
| 120 |
+
return results
|
| 121 |
+
|
| 122 |
+
def append_llm_results_to_dataframe(target_dataframe, fields_to_process, llm_results, selection_table, column_name=None):
|
| 123 |
+
"""
|
| 124 |
+
Add LLM processing results directly to the target DataFrame using selection indices
|
| 125 |
+
|
| 126 |
+
Args:
|
| 127 |
+
target_dataframe (pandas.DataFrame): DataFrame to modify in-place
|
| 128 |
+
fields_to_process (list): List of document dictionaries that were processed
|
| 129 |
+
llm_results (list): Results from the process_with_llm function
|
| 130 |
+
selection_table: Table selection containing indices of rows to update
|
| 131 |
+
column_name (str, optional): Custom name for the new column
|
| 132 |
+
"""
|
| 133 |
+
column_name = column_name or f"Added Column {len(list(target_dataframe))}"
|
| 134 |
+
|
| 135 |
+
# Initialize the new column with empty strings if it doesn't exist
|
| 136 |
+
if column_name not in target_dataframe.columns:
|
| 137 |
+
target_dataframe[column_name] = ""
|
| 138 |
+
|
| 139 |
+
# Safety checks
|
| 140 |
+
if not isinstance(llm_results, list) or not llm_results:
|
| 141 |
+
print("No LLM results to add")
|
| 142 |
+
return
|
| 143 |
+
|
| 144 |
+
# Get indices from selection table
|
| 145 |
+
if selection_table is not None and not selection_table.empty:
|
| 146 |
+
selected_indices = selection_table.index.tolist()
|
| 147 |
+
|
| 148 |
+
# Make sure we have the right number of results for the selected rows
|
| 149 |
+
if len(selected_indices) != len(llm_results):
|
| 150 |
+
print(f"Warning: Number of results ({len(llm_results)}) doesn't match selected rows ({len(selected_indices)})")
|
| 151 |
+
|
| 152 |
+
# Add results to the DataFrame at the selected indices
|
| 153 |
+
for idx, result in zip(selected_indices, llm_results):
|
| 154 |
+
try:
|
| 155 |
+
if idx < len(target_dataframe):
|
| 156 |
+
target_dataframe.at[idx, column_name] = result
|
| 157 |
+
else:
|
| 158 |
+
print(f"Warning: Selected index {idx} exceeds DataFrame length")
|
| 159 |
+
except Exception as e:
|
| 160 |
+
print(f"Error adding result to DataFrame: {str(e)}")
|
| 161 |
+
else:
|
| 162 |
+
print("No selection table provided or empty selection")
|
| 163 |
+
|
| 164 |
+
def add_llm_results_to_dataframe(original_df, fields_to_process, llm_results, column_name=None):
|
| 165 |
+
"""
|
| 166 |
+
Add LLM processing results to a copy of the original DataFrame
|
| 167 |
+
|
| 168 |
+
Args:
|
| 169 |
+
original_df (pandas.DataFrame): Original DataFrame
|
| 170 |
+
fields_to_process (list): List of document dictionaries that were processed
|
| 171 |
+
llm_results (list): Results from the process_with_llm function
|
| 172 |
+
|
| 173 |
+
Returns:
|
| 174 |
+
pandas.DataFrame: Copy of original DataFrame with added "Added Column {len(list(original_df))}" column or a custom name
|
| 175 |
+
"""
|
| 176 |
+
import pandas as pd
|
| 177 |
+
|
| 178 |
+
column_name = column_name or f"Added Column {len(list(original_df))}"
|
| 179 |
+
|
| 180 |
+
# Create a copy of the original DataFrame
|
| 181 |
+
result_df = original_df.copy()
|
| 182 |
+
|
| 183 |
+
# Initialize the new column with empty strings
|
| 184 |
+
result_df[column_name] = ""
|
| 185 |
+
|
| 186 |
+
# Safety checks
|
| 187 |
+
if not isinstance(llm_results, list) or not llm_results:
|
| 188 |
+
print("No LLM results to add")
|
| 189 |
+
return result_df
|
| 190 |
+
|
| 191 |
+
# Add results to the DataFrame
|
| 192 |
+
for i, (doc, result) in enumerate(zip(fields_to_process, llm_results)):
|
| 193 |
+
try:
|
| 194 |
+
# Find the matching row in the DataFrame
|
| 195 |
+
# This assumes the order of fields_to_process matches the original DataFrame
|
| 196 |
+
if i < len(result_df):
|
| 197 |
+
result_df.at[i, column_name] = result
|
| 198 |
+
else:
|
| 199 |
+
print(f"Warning: Result index {i} exceeds DataFrame length")
|
| 200 |
+
except Exception as e:
|
| 201 |
+
print(f"Error adding result to DataFrame: {str(e)}")
|
| 202 |
+
continue
|
| 203 |
+
|
| 204 |
+
return result_df
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
def display_answers_as_markdown(answers, mo):
|
| 208 |
+
"""
|
| 209 |
+
Takes a list of answers and displays each one as markdown using mo.md()
|
| 210 |
+
|
| 211 |
+
Args:
|
| 212 |
+
answers (list): List of text answers from the LLM
|
| 213 |
+
mo: The existing marimo module from the environment
|
| 214 |
+
|
| 215 |
+
Returns:
|
| 216 |
+
list: List of markdown elements
|
| 217 |
+
"""
|
| 218 |
+
# Handle case where answers is None or empty
|
| 219 |
+
if not answers:
|
| 220 |
+
return [mo.md("No answers available")]
|
| 221 |
+
|
| 222 |
+
# Create markdown for each answer
|
| 223 |
+
markdown_elements = []
|
| 224 |
+
for i, answer in enumerate(answers):
|
| 225 |
+
# Create a formatted markdown element with answer number and content
|
| 226 |
+
md_element = mo.md(f"""\n\n---\n\n# Answer {i+1}\n\n{answer}""")
|
| 227 |
+
markdown_elements.append(md_element)
|
| 228 |
+
|
| 229 |
+
return markdown_elements
|
| 230 |
+
|
| 231 |
+
def display_answers_stacked(answers, mo):
|
| 232 |
+
"""
|
| 233 |
+
Takes a list of answers and displays them stacked vertically using mo.vstack()
|
| 234 |
+
|
| 235 |
+
Args:
|
| 236 |
+
answers (list): List of text answers from the LLM
|
| 237 |
+
mo: The existing marimo module from the environment
|
| 238 |
+
|
| 239 |
+
Returns:
|
| 240 |
+
element: A vertically stacked collection of markdown elements
|
| 241 |
+
"""
|
| 242 |
+
# Get individual markdown elements
|
| 243 |
+
md_elements = display_answers_as_markdown(answers, mo)
|
| 244 |
+
|
| 245 |
+
# Add separator between each answer
|
| 246 |
+
separator = mo.md("---")
|
| 247 |
+
elements_with_separators = []
|
| 248 |
+
|
| 249 |
+
for i, elem in enumerate(md_elements):
|
| 250 |
+
elements_with_separators.append(elem)
|
| 251 |
+
if i < len(md_elements) - 1: # Don't add separator after the last element
|
| 252 |
+
elements_with_separators.append(separator)
|
| 253 |
+
|
| 254 |
+
# Return a vertically stacked collection
|
| 255 |
+
return mo.vstack(elements_with_separators, align="start", gap="2")
|