Delete wxai_embedding_visualizer_deployed_21.04.2025_CURRENT.py
Browse files
wxai_embedding_visualizer_deployed_21.04.2025_CURRENT.py
DELETED
|
@@ -1,2056 +0,0 @@
|
|
| 1 |
-
import marimo
|
| 2 |
-
|
| 3 |
-
__generated_with = "0.13.0"
|
| 4 |
-
app = marimo.App(width="full")
|
| 5 |
-
|
| 6 |
-
with app.setup:
|
| 7 |
-
# Initialization code that runs before all other cells
|
| 8 |
-
import marimo as mo
|
| 9 |
-
from typing import Dict, Optional, List, Union, Any
|
| 10 |
-
from ibm_watsonx_ai import APIClient, Credentials
|
| 11 |
-
from pathlib import Path
|
| 12 |
-
import pandas as pd
|
| 13 |
-
import mimetypes
|
| 14 |
-
import requests
|
| 15 |
-
import zipfile
|
| 16 |
-
import tempfile
|
| 17 |
-
import base64
|
| 18 |
-
import polars
|
| 19 |
-
import time
|
| 20 |
-
import json
|
| 21 |
-
import ast
|
| 22 |
-
import os
|
| 23 |
-
import io
|
| 24 |
-
import re
|
| 25 |
-
|
| 26 |
-
def get_iam_token(api_key):
|
| 27 |
-
return requests.post(
|
| 28 |
-
'https://iam.cloud.ibm.com/identity/token',
|
| 29 |
-
headers={'Content-Type': 'application/x-www-form-urlencoded'},
|
| 30 |
-
data={'grant_type': 'urn:ibm:params:oauth:grant-type:apikey', 'apikey': api_key}
|
| 31 |
-
).json()['access_token']
|
| 32 |
-
|
| 33 |
-
def setup_task_credentials(client):
|
| 34 |
-
# Get existing task credentials
|
| 35 |
-
existing_credentials = client.task_credentials.get_details()
|
| 36 |
-
|
| 37 |
-
# Delete existing credentials if any
|
| 38 |
-
if "resources" in existing_credentials and existing_credentials["resources"]:
|
| 39 |
-
for cred in existing_credentials["resources"]:
|
| 40 |
-
cred_id = client.task_credentials.get_id(cred)
|
| 41 |
-
client.task_credentials.delete(cred_id)
|
| 42 |
-
|
| 43 |
-
# Store new credentials
|
| 44 |
-
return client.task_credentials.store()
|
| 45 |
-
|
| 46 |
-
def get_cred_value(key, creds_var_name="baked_in_creds", default=""): ### Helper for working with preset credentials
|
| 47 |
-
"""
|
| 48 |
-
Helper function to safely get a value from a credentials dictionary.
|
| 49 |
-
|
| 50 |
-
Args:
|
| 51 |
-
key: The key to look up in the credentials dictionary.
|
| 52 |
-
creds_var_name: The variable name of the credentials dictionary.
|
| 53 |
-
default: The default value to return if the key is not found.
|
| 54 |
-
|
| 55 |
-
Returns:
|
| 56 |
-
The value from the credentials dictionary if it exists and contains the key,
|
| 57 |
-
otherwise returns the default value.
|
| 58 |
-
"""
|
| 59 |
-
# Check if the credentials variable exists in globals
|
| 60 |
-
if creds_var_name in globals():
|
| 61 |
-
creds_dict = globals()[creds_var_name]
|
| 62 |
-
if isinstance(creds_dict, dict) and key in creds_dict:
|
| 63 |
-
return creds_dict[key]
|
| 64 |
-
return default
|
| 65 |
-
|
| 66 |
-
@app.cell
|
| 67 |
-
def client_variables(client_instantiation_form):
|
| 68 |
-
if client_instantiation_form.value:
|
| 69 |
-
client_setup = client_instantiation_form.value
|
| 70 |
-
else:
|
| 71 |
-
client_setup = None
|
| 72 |
-
|
| 73 |
-
### Extract Credential Variables:
|
| 74 |
-
if client_setup is not None:
|
| 75 |
-
wx_url = client_setup["wx_region"]
|
| 76 |
-
wx_api_key = client_setup["wx_api_key"].strip()
|
| 77 |
-
os.environ["WATSONX_APIKEY"] = wx_api_key
|
| 78 |
-
|
| 79 |
-
if client_setup["project_id"] is not None:
|
| 80 |
-
project_id = client_setup["project_id"].strip()
|
| 81 |
-
else:
|
| 82 |
-
project_id = None
|
| 83 |
-
|
| 84 |
-
if client_setup["space_id"] is not None:
|
| 85 |
-
space_id = client_setup["space_id"].strip()
|
| 86 |
-
else:
|
| 87 |
-
space_id = None
|
| 88 |
-
|
| 89 |
-
else:
|
| 90 |
-
os.environ["WATSONX_APIKEY"] = ""
|
| 91 |
-
project_id = None
|
| 92 |
-
space_id = None
|
| 93 |
-
wx_api_key = None
|
| 94 |
-
wx_url = None
|
| 95 |
-
return client_setup, project_id, space_id, wx_api_key, wx_url
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
@app.cell
|
| 99 |
-
def _(client_setup, wx_api_key):
|
| 100 |
-
if client_setup:
|
| 101 |
-
token = get_iam_token(wx_api_key)
|
| 102 |
-
else:
|
| 103 |
-
token = None
|
| 104 |
-
return
|
| 105 |
-
|
| 106 |
-
@app.cell
|
| 107 |
-
def _():
|
| 108 |
-
baked_in_creds = {
|
| 109 |
-
"purpose": "",
|
| 110 |
-
"api_key": "",
|
| 111 |
-
"project_id": "",
|
| 112 |
-
"space_id": "",
|
| 113 |
-
}
|
| 114 |
-
return baked_in_creds
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
@app.cell
|
| 118 |
-
def client_instantiation(
|
| 119 |
-
client_setup,
|
| 120 |
-
project_id,
|
| 121 |
-
space_id,
|
| 122 |
-
wx_api_key,
|
| 123 |
-
wx_url,
|
| 124 |
-
):
|
| 125 |
-
### Instantiate the watsonx.ai client
|
| 126 |
-
if client_setup:
|
| 127 |
-
wx_credentials = Credentials(
|
| 128 |
-
url=wx_url,
|
| 129 |
-
api_key=wx_api_key
|
| 130 |
-
)
|
| 131 |
-
|
| 132 |
-
if project_id:
|
| 133 |
-
project_client = APIClient(credentials=wx_credentials, project_id=project_id)
|
| 134 |
-
else:
|
| 135 |
-
project_client = None
|
| 136 |
-
|
| 137 |
-
if space_id:
|
| 138 |
-
deployment_client = APIClient(credentials=wx_credentials, space_id=space_id)
|
| 139 |
-
else:
|
| 140 |
-
deployment_client = None
|
| 141 |
-
|
| 142 |
-
if project_client is not None:
|
| 143 |
-
task_credentials_details = setup_task_credentials(project_client)
|
| 144 |
-
else:
|
| 145 |
-
task_credentials_details = setup_task_credentials(deployment_client)
|
| 146 |
-
else:
|
| 147 |
-
wx_credentials = None
|
| 148 |
-
project_client = None
|
| 149 |
-
deployment_client = None
|
| 150 |
-
task_credentials_details = None
|
| 151 |
-
|
| 152 |
-
client_status = mo.md("### Client Instantiation Status will turn Green When Ready")
|
| 153 |
-
|
| 154 |
-
if project_client is not None or deployment_client is not None:
|
| 155 |
-
client_callout_kind = "success"
|
| 156 |
-
else:
|
| 157 |
-
client_callout_kind = "neutral"
|
| 158 |
-
return (
|
| 159 |
-
client_callout_kind,
|
| 160 |
-
client_status,
|
| 161 |
-
deployment_client,
|
| 162 |
-
project_client,
|
| 163 |
-
)
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
@app.cell
|
| 167 |
-
def _():
|
| 168 |
-
mo.md(
|
| 169 |
-
r"""
|
| 170 |
-
#watsonx.ai Embedding Visualizer - Marimo Notebook
|
| 171 |
-
|
| 172 |
-
#### This marimo notebook can be used to develop a more intuitive understanding of how vector embeddings work by creating a 3D visualization of vector embeddings based on chunked PDF document pages.
|
| 173 |
-
|
| 174 |
-
#### It can also serve as a useful tool for identifying gaps in model choice, chunking strategy or contents used in building collections by showing how far you are from what you want.
|
| 175 |
-
<br>
|
| 176 |
-
|
| 177 |
-
/// admonition
|
| 178 |
-
Created by ***Milan Mrdenovic*** [[email protected]] for IBM Ecosystem Client Engineering, NCEE - ***version 5.3** - 20.04.2025*
|
| 179 |
-
///
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
>Licensed under apache 2.0, users hold full accountability for any use or modification of the code.
|
| 183 |
-
><br>This asset is part of a set meant to support IBMers, IBM Partners, Clients in developing understanding of how to better utilize various watsonx features and generative AI as a subject matter.
|
| 184 |
-
|
| 185 |
-
<br>
|
| 186 |
-
"""
|
| 187 |
-
)
|
| 188 |
-
return
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
@app.cell
|
| 192 |
-
def _():
|
| 193 |
-
mo.md("""###Part 1 - Client Setup, File Preparation and Chunking""")
|
| 194 |
-
return
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
@app.cell
|
| 198 |
-
def accordion_client_setup(client_selector, client_stack):
|
| 199 |
-
ui_accordion_part_1_1 = mo.accordion(
|
| 200 |
-
{
|
| 201 |
-
"Instantiate Client": mo.vstack([client_stack, client_selector], align="center"),
|
| 202 |
-
}
|
| 203 |
-
)
|
| 204 |
-
|
| 205 |
-
ui_accordion_part_1_1
|
| 206 |
-
return
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
@app.cell
|
| 210 |
-
def accordion_file_upload(select_stack):
|
| 211 |
-
ui_accordion_part_1_2 = mo.accordion(
|
| 212 |
-
{
|
| 213 |
-
"Select Model & Upload Files": select_stack
|
| 214 |
-
}
|
| 215 |
-
)
|
| 216 |
-
|
| 217 |
-
ui_accordion_part_1_2
|
| 218 |
-
return
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
@app.cell
|
| 222 |
-
def loaded_texts(
|
| 223 |
-
create_temp_files_from_uploads,
|
| 224 |
-
file_loader,
|
| 225 |
-
pdf_reader,
|
| 226 |
-
run_upload_button,
|
| 227 |
-
set_text_state,
|
| 228 |
-
):
|
| 229 |
-
if file_loader.value is not None and run_upload_button.value:
|
| 230 |
-
filepaths = create_temp_files_from_uploads(file_loader.value)
|
| 231 |
-
loaded_texts = load_pdf_data_with_progress(pdf_reader, filepaths, file_loader.value, show_progress=True)
|
| 232 |
-
|
| 233 |
-
set_text_state(loaded_texts)
|
| 234 |
-
else:
|
| 235 |
-
filepaths = None
|
| 236 |
-
loaded_texts = None
|
| 237 |
-
return
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
@app.cell
|
| 241 |
-
def accordion_chunker_setup(chunker_setup):
|
| 242 |
-
ui_accordion_part_1_3 = mo.accordion(
|
| 243 |
-
{
|
| 244 |
-
"Chunker Setup": chunker_setup
|
| 245 |
-
}
|
| 246 |
-
)
|
| 247 |
-
|
| 248 |
-
ui_accordion_part_1_3
|
| 249 |
-
return
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
@app.cell
|
| 253 |
-
def chunk_documents_to_nodes(
|
| 254 |
-
get_text_state,
|
| 255 |
-
sentence_splitter,
|
| 256 |
-
sentence_splitter_config,
|
| 257 |
-
set_chunk_state,
|
| 258 |
-
):
|
| 259 |
-
if sentence_splitter_config.value and sentence_splitter and get_text_state() is not None:
|
| 260 |
-
chunked_texts = chunk_documents(get_text_state(), sentence_splitter, show_progress=True)
|
| 261 |
-
set_chunk_state(chunked_texts)
|
| 262 |
-
else:
|
| 263 |
-
chunked_texts = None
|
| 264 |
-
return (chunked_texts,)
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
@app.cell
|
| 268 |
-
def _():
|
| 269 |
-
mo.md(r"""###Part 2 - Query Setup and Visualization""")
|
| 270 |
-
return
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
@app.cell
|
| 274 |
-
def accordion_chunk_range(chart_range_selection):
|
| 275 |
-
ui_accordion_part_2_1 = mo.accordion(
|
| 276 |
-
{
|
| 277 |
-
"Chunk Range Selection": chart_range_selection
|
| 278 |
-
}
|
| 279 |
-
)
|
| 280 |
-
ui_accordion_part_2_1
|
| 281 |
-
return
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
@app.cell
|
| 285 |
-
def chunk_embedding(
|
| 286 |
-
chunks_to_process,
|
| 287 |
-
embedding,
|
| 288 |
-
sentence_splitter_config,
|
| 289 |
-
set_embedding_state,
|
| 290 |
-
):
|
| 291 |
-
if sentence_splitter_config.value is not None and chunks_to_process is not None:
|
| 292 |
-
with mo.status.spinner(title="Embedding Documents...", remove_on_exit=True) as _spinner:
|
| 293 |
-
output_embeddings = embedding.embed_documents(chunks_to_process)
|
| 294 |
-
_spinner.update("Almost Done")
|
| 295 |
-
time.sleep(1.5)
|
| 296 |
-
set_embedding_state(output_embeddings)
|
| 297 |
-
_spinner.update("Documents Embedded")
|
| 298 |
-
else:
|
| 299 |
-
output_embeddings = None
|
| 300 |
-
return
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
@app.cell
|
| 304 |
-
def preview_chunks(chunks_dict):
|
| 305 |
-
if chunks_dict is not None:
|
| 306 |
-
stats = create_stats(chunks_dict,
|
| 307 |
-
bordered=True,
|
| 308 |
-
object_names=['text','text'],
|
| 309 |
-
group_by_row=True,
|
| 310 |
-
items_per_row=5,
|
| 311 |
-
gap=1,
|
| 312 |
-
label="Chunk")
|
| 313 |
-
ui_chunk_viewer = mo.accordion(
|
| 314 |
-
{
|
| 315 |
-
"View Chunks": stats,
|
| 316 |
-
}
|
| 317 |
-
)
|
| 318 |
-
else:
|
| 319 |
-
ui_chunk_viewer = None
|
| 320 |
-
|
| 321 |
-
ui_chunk_viewer
|
| 322 |
-
return
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
@app.cell
|
| 326 |
-
def accordion_query_view(chart_visualization, query_stack):
|
| 327 |
-
ui_accordion_part_2_2 = mo.accordion(
|
| 328 |
-
{
|
| 329 |
-
"Query": mo.vstack([query_stack, mo.hstack([chart_visualization])], align="center", gap=3)
|
| 330 |
-
}
|
| 331 |
-
)
|
| 332 |
-
ui_accordion_part_2_2
|
| 333 |
-
return
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
@app.cell
|
| 337 |
-
def chunker_setup(sentence_splitter_config):
|
| 338 |
-
chunker_setup = mo.hstack([sentence_splitter_config], justify="space-around", align="center", widths=[0.55])
|
| 339 |
-
return (chunker_setup,)
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
@app.cell
|
| 343 |
-
def file_and_model_select(
|
| 344 |
-
file_loader,
|
| 345 |
-
get_embedding_model_list,
|
| 346 |
-
run_upload_button,
|
| 347 |
-
):
|
| 348 |
-
select_stack = mo.hstack([get_embedding_model_list(), mo.vstack([file_loader, run_upload_button], align="center")], justify="space-around", align="center", widths=[0.3,0.3])
|
| 349 |
-
return (select_stack,)
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
@app.cell
|
| 353 |
-
def client_instantiation_form():
|
| 354 |
-
# Endpoints
|
| 355 |
-
wx_platform_url = "https://api.dataplatform.cloud.ibm.com"
|
| 356 |
-
regions = {
|
| 357 |
-
"US": "https://us-south.ml.cloud.ibm.com",
|
| 358 |
-
"EU": "https://eu-de.ml.cloud.ibm.com",
|
| 359 |
-
"GB": "https://eu-gb.ml.cloud.ibm.com",
|
| 360 |
-
"JP": "https://jp-tok.ml.cloud.ibm.com",
|
| 361 |
-
"AU": "https://au-syd.ml.cloud.ibm.com",
|
| 362 |
-
"CA": "https://ca-tor.ml.cloud.ibm.com"
|
| 363 |
-
}
|
| 364 |
-
|
| 365 |
-
# Create a form with multiple elements
|
| 366 |
-
client_instantiation_form = (
|
| 367 |
-
mo.md('''
|
| 368 |
-
###**watsonx.ai credentials:**
|
| 369 |
-
|
| 370 |
-
{wx_region}
|
| 371 |
-
|
| 372 |
-
{wx_api_key}
|
| 373 |
-
|
| 374 |
-
{project_id}
|
| 375 |
-
|
| 376 |
-
{space_id}
|
| 377 |
-
''')
|
| 378 |
-
.batch(
|
| 379 |
-
wx_region = mo.ui.dropdown(regions, label="Select your watsonx.ai region:", value="US", searchable=True),
|
| 380 |
-
wx_api_key = mo.ui.text(placeholder="Add your IBM Cloud api-key...", label="IBM Cloud Api-key:",
|
| 381 |
-
kind="password", value=get_cred_value('api_key', creds_var_name='baked_in_creds')),
|
| 382 |
-
project_id = mo.ui.text(placeholder="Add your watsonx.ai project_id...", label="Project_ID:",
|
| 383 |
-
kind="text", value=get_cred_value('project_id', creds_var_name='baked_in_creds')),
|
| 384 |
-
space_id = mo.ui.text(placeholder="Add your watsonx.ai space_id...", label="Space_ID:",
|
| 385 |
-
kind="text", value=get_cred_value('space_id', creds_var_name='baked_in_creds'))
|
| 386 |
-
,)
|
| 387 |
-
.form(show_clear_button=True, bordered=False)
|
| 388 |
-
)
|
| 389 |
-
return (client_instantiation_form,)
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
@app.cell
|
| 393 |
-
def instantiation_status(
|
| 394 |
-
client_callout_kind,
|
| 395 |
-
client_instantiation_form,
|
| 396 |
-
client_status,
|
| 397 |
-
):
|
| 398 |
-
client_callout = mo.callout(client_status, kind=client_callout_kind)
|
| 399 |
-
client_stack = mo.hstack([client_instantiation_form, client_callout], align="center", justify="space-around", gap=10)
|
| 400 |
-
return (client_stack,)
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
@app.cell
|
| 404 |
-
def client_selector(deployment_client, project_client):
|
| 405 |
-
if deployment_client is not None:
|
| 406 |
-
client_options = {"Deployment Client":deployment_client}
|
| 407 |
-
|
| 408 |
-
elif project_client is not None:
|
| 409 |
-
client_options = {"Project Client":project_client}
|
| 410 |
-
|
| 411 |
-
elif project_client is not None and deployment_client is not None:
|
| 412 |
-
client_options = {"Project Client":project_client,"Deployment Client":deployment_client}
|
| 413 |
-
|
| 414 |
-
else:
|
| 415 |
-
client_options = {"No Client": "Instantiate a Client"}
|
| 416 |
-
|
| 417 |
-
default_client = next(iter(client_options))
|
| 418 |
-
client_selector = mo.ui.dropdown(client_options, value=default_client, label="**Select your active client:**")
|
| 419 |
-
|
| 420 |
-
return (client_selector,)
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
@app.cell
|
| 424 |
-
def active_client(client_selector):
|
| 425 |
-
client = client_selector.value
|
| 426 |
-
return (client,)
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
@app.cell
|
| 430 |
-
def emb_model_selection(client, set_embedding_model_list):
|
| 431 |
-
if client:
|
| 432 |
-
model_specs = client.foundation_models.get_embeddings_model_specs()
|
| 433 |
-
# model_specs = client.foundation_models.get_model_specs()
|
| 434 |
-
resources = model_specs["resources"]
|
| 435 |
-
# Define embedding models reference data
|
| 436 |
-
embedding_models = {
|
| 437 |
-
"ibm/granite-embedding-107m-multilingual": {"max_tokens": 512, "embedding_dimensions": 384},
|
| 438 |
-
"ibm/granite-embedding-278m-multilingual": {"max_tokens": 512, "embedding_dimensions": 768},
|
| 439 |
-
"ibm/slate-125m-english-rtrvr-v2": {"max_tokens": 512, "embedding_dimensions": 768},
|
| 440 |
-
"ibm/slate-125m-english-rtrvr": {"max_tokens": 512, "embedding_dimensions": 768},
|
| 441 |
-
"ibm/slate-30m-english-rtrvr-v2": {"max_tokens": 512, "embedding_dimensions": 384},
|
| 442 |
-
"ibm/slate-30m-english-rtrvr": {"max_tokens": 512, "embedding_dimensions": 384},
|
| 443 |
-
"sentence-transformers/all-minilm-l6-v2": {"max_tokens": 128, "embedding_dimensions": 384},
|
| 444 |
-
"sentence-transformers/all-minilm-l12-v2": {"max_tokens": 128, "embedding_dimensions": 384},
|
| 445 |
-
"intfloat/multilingual-e5-large": {"max_tokens": 512, "embedding_dimensions": 1024}
|
| 446 |
-
}
|
| 447 |
-
|
| 448 |
-
# Get model IDs from resources
|
| 449 |
-
model_id_list = []
|
| 450 |
-
for resource in resources:
|
| 451 |
-
model_id_list.append(resource["model_id"])
|
| 452 |
-
|
| 453 |
-
# Create enhanced model data for the table
|
| 454 |
-
embedding_model_data = []
|
| 455 |
-
for model_id in model_id_list:
|
| 456 |
-
model_entry = {"model_id": model_id}
|
| 457 |
-
|
| 458 |
-
# Add properties if model exists in our reference, otherwise use 0
|
| 459 |
-
if model_id in embedding_models:
|
| 460 |
-
model_entry["max_tokens"] = embedding_models[model_id]["max_tokens"]
|
| 461 |
-
model_entry["embedding_dimensions"] = embedding_models[model_id]["embedding_dimensions"]
|
| 462 |
-
else:
|
| 463 |
-
model_entry["max_tokens"] = 0
|
| 464 |
-
model_entry["embedding_dimensions"] = 0
|
| 465 |
-
|
| 466 |
-
embedding_model_data.append(model_entry)
|
| 467 |
-
|
| 468 |
-
embedding_model_selection = mo.ui.table(
|
| 469 |
-
embedding_model_data,
|
| 470 |
-
selection="single", # Only allow selecting one row
|
| 471 |
-
label="Select an embedding model to use.",
|
| 472 |
-
page_size=30,
|
| 473 |
-
initial_selection=[1]
|
| 474 |
-
)
|
| 475 |
-
set_embedding_model_list(embedding_model_selection)
|
| 476 |
-
else:
|
| 477 |
-
default_model_data = [{
|
| 478 |
-
"model_id": "ibm/granite-embedding-107m-multilingual",
|
| 479 |
-
"max_tokens": 512,
|
| 480 |
-
"embedding_dimensions": 384
|
| 481 |
-
}]
|
| 482 |
-
|
| 483 |
-
set_embedding_model_list(create_emb_model_selection_table(default_model_data, initial_selection=0, selection_type="single", label="Select a model to use."))
|
| 484 |
-
return
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
@app.function
|
| 488 |
-
def create_emb_model_selection_table(model_data, initial_selection=0, selection_type="single", label="Select a model to use."):
|
| 489 |
-
embedding_model_selection = mo.ui.table(
|
| 490 |
-
model_data,
|
| 491 |
-
selection=selection_type, # Only allow selecting one row
|
| 492 |
-
label=label,
|
| 493 |
-
page_size=30,
|
| 494 |
-
initial_selection=[initial_selection]
|
| 495 |
-
)
|
| 496 |
-
return embedding_model_selection
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
@app.cell
|
| 500 |
-
def embedding_model():
|
| 501 |
-
get_embedding_model_list, set_embedding_model_list = mo.state(None)
|
| 502 |
-
return get_embedding_model_list, set_embedding_model_list
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
@app.cell
|
| 506 |
-
def emb_model_parameters(emb_model_max_tk):
|
| 507 |
-
from ibm_watsonx_ai.foundation_models import Embeddings
|
| 508 |
-
from ibm_watsonx_ai.metanames import EmbedTextParamsMetaNames as EmbedParams
|
| 509 |
-
|
| 510 |
-
embed_params = {
|
| 511 |
-
EmbedParams.TRUNCATE_INPUT_TOKENS: emb_model_max_tk,
|
| 512 |
-
EmbedParams.RETURN_OPTIONS: {
|
| 513 |
-
'input_text': True
|
| 514 |
-
}
|
| 515 |
-
}
|
| 516 |
-
return Embeddings, embed_params
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
@app.cell
|
| 520 |
-
def emb_model_state(get_embedding_model_list):
|
| 521 |
-
embedding_model = get_embedding_model_list()
|
| 522 |
-
return (embedding_model,)
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
@app.cell
|
| 526 |
-
def emb_model_setup(embedding_model):
|
| 527 |
-
emb_model = embedding_model.value[0]['model_id']
|
| 528 |
-
emb_model_max_tk = embedding_model.value[0]['max_tokens']
|
| 529 |
-
emb_model_emb_dim = embedding_model.value[0]['embedding_dimensions']
|
| 530 |
-
return emb_model, emb_model_emb_dim, emb_model_max_tk
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
@app.cell
|
| 534 |
-
def emb_model_instantiation(Embeddings, client, emb_model, embed_params):
|
| 535 |
-
if client is not None:
|
| 536 |
-
embedding = Embeddings(
|
| 537 |
-
model_id=emb_model,
|
| 538 |
-
api_client=client,
|
| 539 |
-
params=embed_params,
|
| 540 |
-
batch_size=1000,
|
| 541 |
-
concurrency_limit=10
|
| 542 |
-
)
|
| 543 |
-
else:
|
| 544 |
-
embedding = None
|
| 545 |
-
return (embedding,)
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
@app.cell
|
| 549 |
-
def _():
|
| 550 |
-
get_embedding_state, set_embedding_state = mo.state(None)
|
| 551 |
-
return get_embedding_state, set_embedding_state
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
@app.cell
|
| 555 |
-
def _():
|
| 556 |
-
get_query_state, set_query_state = mo.state(None)
|
| 557 |
-
return get_query_state, set_query_state
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
@app.cell
|
| 561 |
-
def file_loader_input():
|
| 562 |
-
file_loader = mo.ui.file(
|
| 563 |
-
kind="area",
|
| 564 |
-
filetypes=[".pdf"],
|
| 565 |
-
label=" Load .pdf files ",
|
| 566 |
-
multiple=True
|
| 567 |
-
)
|
| 568 |
-
return (file_loader,)
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
@app.cell
|
| 572 |
-
def file_loader_run(file_loader):
|
| 573 |
-
if file_loader.value is not None:
|
| 574 |
-
run_upload_button = mo.ui.run_button(label="Load Files")
|
| 575 |
-
else:
|
| 576 |
-
run_upload_button = mo.ui.run_button(disabled=True, label="Load Files")
|
| 577 |
-
return (run_upload_button,)
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
@app.cell
|
| 581 |
-
def helper_function_tempfiles():
|
| 582 |
-
def create_temp_files_from_uploads(upload_results) -> List[str]:
|
| 583 |
-
"""
|
| 584 |
-
Creates temporary files from a tuple of FileUploadResults objects and returns their paths.
|
| 585 |
-
Args:
|
| 586 |
-
upload_results: Object containing a value attribute that is a tuple of FileUploadResults
|
| 587 |
-
Returns:
|
| 588 |
-
List of temporary file paths
|
| 589 |
-
"""
|
| 590 |
-
temp_file_paths = []
|
| 591 |
-
|
| 592 |
-
# Get the number of items in the tuple
|
| 593 |
-
num_items = len(upload_results)
|
| 594 |
-
|
| 595 |
-
# Process each item by index
|
| 596 |
-
for i in range(num_items):
|
| 597 |
-
result = upload_results[i] # Get item by index
|
| 598 |
-
|
| 599 |
-
# Create a temporary file with the original filename
|
| 600 |
-
temp_dir = tempfile.gettempdir()
|
| 601 |
-
file_name = result.name
|
| 602 |
-
temp_path = os.path.join(temp_dir, file_name)
|
| 603 |
-
# Write the contents to the temp file
|
| 604 |
-
with open(temp_path, 'wb') as temp_file:
|
| 605 |
-
temp_file.write(result.contents)
|
| 606 |
-
# Add the path to our list
|
| 607 |
-
temp_file_paths.append(temp_path)
|
| 608 |
-
|
| 609 |
-
return temp_file_paths
|
| 610 |
-
|
| 611 |
-
def cleanup_temp_files(temp_file_paths: List[str]) -> None:
|
| 612 |
-
"""Delete temporary files after use."""
|
| 613 |
-
for path in temp_file_paths:
|
| 614 |
-
if os.path.exists(path):
|
| 615 |
-
os.unlink(path)
|
| 616 |
-
return (create_temp_files_from_uploads,)
|
| 617 |
-
|
| 618 |
-
|
| 619 |
-
@app.function
|
| 620 |
-
def load_pdf_data_with_progress(pdf_reader, filepaths, file_loader_value, show_progress=True):
|
| 621 |
-
"""
|
| 622 |
-
Loads PDF data for each file path and organizes results by original filename.
|
| 623 |
-
Args:
|
| 624 |
-
pdf_reader: The PyMuPDFReader instance
|
| 625 |
-
filepaths: List of temporary file paths
|
| 626 |
-
file_loader_value: The original upload results value containing file information
|
| 627 |
-
show_progress: Whether to show a progress bar during loading (default: False)
|
| 628 |
-
Returns:
|
| 629 |
-
Dictionary mapping original filenames to their loaded text content
|
| 630 |
-
"""
|
| 631 |
-
results = {}
|
| 632 |
-
|
| 633 |
-
# Process files with or without progress bar
|
| 634 |
-
if show_progress:
|
| 635 |
-
import marimo as mo
|
| 636 |
-
# Use progress bar with the length of filepaths as total
|
| 637 |
-
with mo.status.progress_bar(
|
| 638 |
-
total=len(filepaths),
|
| 639 |
-
title="Loading PDFs",
|
| 640 |
-
subtitle="Processing documents...",
|
| 641 |
-
completion_title="PDF Loading Complete",
|
| 642 |
-
completion_subtitle=f"{len(filepaths)} documents processed",
|
| 643 |
-
remove_on_exit=True
|
| 644 |
-
) as bar:
|
| 645 |
-
# Process each file path
|
| 646 |
-
for i, file_path in enumerate(filepaths):
|
| 647 |
-
|
| 648 |
-
original_file_name = file_loader_value[i].name
|
| 649 |
-
bar.update(subtitle=f"Processing {original_file_name}...")
|
| 650 |
-
loaded_text = pdf_reader.load_data(file_path=file_path, metadata=True)
|
| 651 |
-
|
| 652 |
-
# Store the result with the original filename as the key
|
| 653 |
-
results[original_file_name] = loaded_text
|
| 654 |
-
# Update progress bar
|
| 655 |
-
bar.update(increment=1)
|
| 656 |
-
else:
|
| 657 |
-
# Original logic without progress bar
|
| 658 |
-
for i, file_path in enumerate(filepaths):
|
| 659 |
-
original_file_name = file_loader_value[i].name
|
| 660 |
-
loaded_text = pdf_reader.load_data(file_path=file_path, metadata=True)
|
| 661 |
-
results[original_file_name] = loaded_text
|
| 662 |
-
|
| 663 |
-
return results
|
| 664 |
-
|
| 665 |
-
|
| 666 |
-
@app.cell
|
| 667 |
-
def file_readers():
|
| 668 |
-
from llama_index.readers.file import PyMuPDFReader
|
| 669 |
-
from llama_index.readers.file import FlatReader
|
| 670 |
-
from llama_index.core.node_parser import SentenceSplitter
|
| 671 |
-
|
| 672 |
-
### File Readers
|
| 673 |
-
pdf_reader = PyMuPDFReader()
|
| 674 |
-
# flat_file_reader = FlatReader()
|
| 675 |
-
return SentenceSplitter, pdf_reader
|
| 676 |
-
|
| 677 |
-
|
| 678 |
-
@app.cell
|
| 679 |
-
def sentence_splitter_setup():
|
| 680 |
-
### Chunker Setup
|
| 681 |
-
sentence_splitter_config = (
|
| 682 |
-
mo.md('''
|
| 683 |
-
###**Chunking Setup:**
|
| 684 |
-
|
| 685 |
-
> Unless you want to do some advanced sentence splitting, it's best to stick to adjusting only the chunk size and overlap. Changing the other settings might result in unexpected results.
|
| 686 |
-
|
| 687 |
-
Separator value is set to **" "** by default, while the paragraph separator is **"\\n\\n\\n"**.
|
| 688 |
-
|
| 689 |
-
{chunk_size} {chunk_overlap}
|
| 690 |
-
|
| 691 |
-
{separator} {paragraph_separator}
|
| 692 |
-
|
| 693 |
-
{secondary_chunking_regex}
|
| 694 |
-
|
| 695 |
-
{include_metadata}
|
| 696 |
-
|
| 697 |
-
''')
|
| 698 |
-
.batch(
|
| 699 |
-
chunk_size = mo.ui.slider(start=100, stop=5000, step=1, label="**Chunk SizeL**", value=350, show_value=True),
|
| 700 |
-
chunk_overlap = mo.ui.slider(start=1, stop=1000, step=1, label="**Chunk Overlap:**", value=50, show_value=True),
|
| 701 |
-
separator = mo.ui.text(placeholder="Define a separator", label="**Separator:**", kind="text", value=" "),
|
| 702 |
-
paragraph_separator = mo.ui.text(placeholder="Define a paragraph separator",
|
| 703 |
-
label="**Paragraph Separator:**", kind="text",
|
| 704 |
-
value="\n\n\n"),
|
| 705 |
-
secondary_chunking_regex = mo.ui.text(placeholder="Define a secondary chunking regex",
|
| 706 |
-
label="**Chunking Regex:**", kind="text",
|
| 707 |
-
value="[^,.;?!]+[,.;?!]?"),
|
| 708 |
-
include_metadata= mo.ui.checkbox(value=True, label="**Include Metadata**")
|
| 709 |
-
)
|
| 710 |
-
.form(show_clear_button=True, bordered=False)
|
| 711 |
-
)
|
| 712 |
-
return (sentence_splitter_config,)
|
| 713 |
-
|
| 714 |
-
|
| 715 |
-
@app.cell
|
| 716 |
-
def sentence_splitter_instantiation(
|
| 717 |
-
SentenceSplitter,
|
| 718 |
-
sentence_splitter_config,
|
| 719 |
-
):
|
| 720 |
-
### Chunker/Sentence Splitter
|
| 721 |
-
def simple_whitespace_tokenizer(text):
|
| 722 |
-
return text.split()
|
| 723 |
-
|
| 724 |
-
if sentence_splitter_config.value is not None:
|
| 725 |
-
sentence_splitter_config_values = sentence_splitter_config.value
|
| 726 |
-
validated_chunk_overlap = min(sentence_splitter_config_values.get("chunk_overlap"),
|
| 727 |
-
int(sentence_splitter_config_values.get("chunk_size") * 0.3))
|
| 728 |
-
|
| 729 |
-
sentence_splitter = SentenceSplitter(
|
| 730 |
-
chunk_size=sentence_splitter_config_values.get("chunk_size"),
|
| 731 |
-
chunk_overlap=validated_chunk_overlap,
|
| 732 |
-
separator=sentence_splitter_config_values.get("separator"),
|
| 733 |
-
paragraph_separator=sentence_splitter_config_values.get("paragraph_separator"),
|
| 734 |
-
secondary_chunking_regex=sentence_splitter_config_values.get("secondary_chunking_regex"),
|
| 735 |
-
include_metadata=sentence_splitter_config_values.get("include_metadata"),
|
| 736 |
-
tokenizer=simple_whitespace_tokenizer
|
| 737 |
-
)
|
| 738 |
-
|
| 739 |
-
else:
|
| 740 |
-
sentence_splitter = SentenceSplitter(
|
| 741 |
-
chunk_size=2048,
|
| 742 |
-
chunk_overlap=204,
|
| 743 |
-
separator=" ",
|
| 744 |
-
paragraph_separator="\n\n\n",
|
| 745 |
-
secondary_chunking_regex="[^,.;?!]+[,.;?!]?",
|
| 746 |
-
include_metadata=True,
|
| 747 |
-
tokenizer=simple_whitespace_tokenizer
|
| 748 |
-
)
|
| 749 |
-
return (sentence_splitter,)
|
| 750 |
-
|
| 751 |
-
|
| 752 |
-
@app.cell
|
| 753 |
-
def text_state():
|
| 754 |
-
get_text_state, set_text_state = mo.state(None)
|
| 755 |
-
return get_text_state, set_text_state
|
| 756 |
-
|
| 757 |
-
|
| 758 |
-
@app.cell
|
| 759 |
-
def chunk_state():
|
| 760 |
-
get_chunk_state, set_chunk_state = mo.state(None)
|
| 761 |
-
return get_chunk_state, set_chunk_state
|
| 762 |
-
|
| 763 |
-
|
| 764 |
-
@app.function
|
| 765 |
-
def chunk_documents(loaded_texts, sentence_splitter, show_progress=True):
|
| 766 |
-
"""
|
| 767 |
-
Process each document in the loaded_texts dictionary using the sentence_splitter,
|
| 768 |
-
with an optional marimo progress bar tracking progress at document level.
|
| 769 |
-
|
| 770 |
-
Args:
|
| 771 |
-
loaded_texts (dict): Dictionary containing lists of Document objects
|
| 772 |
-
sentence_splitter: The sentence splitter object with get_nodes_from_documents method
|
| 773 |
-
show_progress (bool): Whether to show a progress bar during processing
|
| 774 |
-
|
| 775 |
-
Returns:
|
| 776 |
-
dict: Dictionary with the same structure but containing chunked texts
|
| 777 |
-
"""
|
| 778 |
-
chunked_texts_dict = {}
|
| 779 |
-
|
| 780 |
-
# Get the total number of documents across all keys
|
| 781 |
-
total_docs = sum(len(docs) for docs in loaded_texts.values())
|
| 782 |
-
processed_docs = 0
|
| 783 |
-
|
| 784 |
-
# Process with or without progress bar
|
| 785 |
-
if show_progress:
|
| 786 |
-
import marimo as mo
|
| 787 |
-
# Use progress bar with the total number of documents as total
|
| 788 |
-
with mo.status.progress_bar(
|
| 789 |
-
total=total_docs,
|
| 790 |
-
title="Processing Documents",
|
| 791 |
-
subtitle="Chunking documents...",
|
| 792 |
-
completion_title="Processing Complete",
|
| 793 |
-
completion_subtitle=f"{total_docs} documents processed",
|
| 794 |
-
remove_on_exit=True
|
| 795 |
-
) as bar:
|
| 796 |
-
# Process each key-value pair in the loaded_texts dictionary
|
| 797 |
-
for key, documents in loaded_texts.items():
|
| 798 |
-
# Update progress bar subtitle to show current key
|
| 799 |
-
doc_count = len(documents)
|
| 800 |
-
bar.update(subtitle=f"Chunking {key}... ({doc_count} documents)")
|
| 801 |
-
|
| 802 |
-
# Apply the sentence splitter to each list of documents
|
| 803 |
-
chunked_texts = sentence_splitter.get_nodes_from_documents(
|
| 804 |
-
documents,
|
| 805 |
-
show_progress=False # Disable internal progress to avoid nested bars
|
| 806 |
-
)
|
| 807 |
-
|
| 808 |
-
# Store the result with the same key
|
| 809 |
-
chunked_texts_dict[key] = chunked_texts
|
| 810 |
-
time.sleep(0.15)
|
| 811 |
-
|
| 812 |
-
# Update progress bar with the number of documents in this batch
|
| 813 |
-
bar.update(increment=doc_count)
|
| 814 |
-
processed_docs += doc_count
|
| 815 |
-
else:
|
| 816 |
-
# Process without progress bar
|
| 817 |
-
for key, documents in loaded_texts.items():
|
| 818 |
-
chunked_texts = sentence_splitter.get_nodes_from_documents(
|
| 819 |
-
documents,
|
| 820 |
-
show_progress=True # Use the internal progress bar if no marimo bar
|
| 821 |
-
)
|
| 822 |
-
chunked_texts_dict[key] = chunked_texts
|
| 823 |
-
|
| 824 |
-
return chunked_texts_dict
|
| 825 |
-
|
| 826 |
-
|
| 827 |
-
@app.cell
|
| 828 |
-
def chunked_nodes(chunked_texts, get_chunk_state, sentence_splitter):
|
| 829 |
-
if chunked_texts is not None and sentence_splitter:
|
| 830 |
-
chunked_documents = get_chunk_state()
|
| 831 |
-
else:
|
| 832 |
-
chunked_documents = None
|
| 833 |
-
return (chunked_documents,)
|
| 834 |
-
|
| 835 |
-
|
| 836 |
-
@app.cell
|
| 837 |
-
def prep_cumulative_df(chunked_documents, llamaindex_convert_docs_multi):
|
| 838 |
-
if chunked_documents is not None:
|
| 839 |
-
dict_from_nodes = llamaindex_convert_docs_multi(chunked_documents)
|
| 840 |
-
nodes_from_dict = llamaindex_convert_docs_multi(dict_from_nodes)
|
| 841 |
-
else:
|
| 842 |
-
dict_from_nodes = None
|
| 843 |
-
nodes_from_dict = None
|
| 844 |
-
return (dict_from_nodes,)
|
| 845 |
-
|
| 846 |
-
|
| 847 |
-
@app.cell
|
| 848 |
-
def chunks_to_process(
|
| 849 |
-
dict_from_nodes,
|
| 850 |
-
document_range_stack,
|
| 851 |
-
get_data_in_range_triplequote,
|
| 852 |
-
):
|
| 853 |
-
if dict_from_nodes is not None and document_range_stack.value is not None:
|
| 854 |
-
|
| 855 |
-
chunk_dict_df = create_cumulative_dataframe(dict_from_nodes)
|
| 856 |
-
|
| 857 |
-
if document_range_stack.value is not None:
|
| 858 |
-
chunk_start_idx = document_range_stack.value[0]
|
| 859 |
-
chunk_end_idx = document_range_stack.value[1]
|
| 860 |
-
else:
|
| 861 |
-
chunk_start_idx = 0
|
| 862 |
-
chunk_end_idx = len(chunk_dict_df)
|
| 863 |
-
|
| 864 |
-
chunk_range_index = [chunk_start_idx, chunk_end_idx]
|
| 865 |
-
chunks_dict = get_data_in_range_triplequote(chunk_dict_df,
|
| 866 |
-
index_range=chunk_range_index,
|
| 867 |
-
columns_to_include=["text"])
|
| 868 |
-
|
| 869 |
-
chunks_to_process = chunks_dict['text'] if 'text' in chunks_dict else []
|
| 870 |
-
else:
|
| 871 |
-
chunk_objects = None
|
| 872 |
-
chunks_dict = None
|
| 873 |
-
chunks_to_process = None
|
| 874 |
-
return chunks_dict, chunks_to_process
|
| 875 |
-
|
| 876 |
-
|
| 877 |
-
@app.cell
|
| 878 |
-
def helper_function_doc_formatting():
|
| 879 |
-
def llamaindex_convert_docs_multi(items):
|
| 880 |
-
"""
|
| 881 |
-
Automatically convert between document objects and dictionaries.
|
| 882 |
-
|
| 883 |
-
This function handles:
|
| 884 |
-
- Converting dictionaries to document objects
|
| 885 |
-
- Converting document objects to dictionaries
|
| 886 |
-
- Processing lists or individual items
|
| 887 |
-
- Supporting dictionary structures where values are lists of documents
|
| 888 |
-
|
| 889 |
-
Args:
|
| 890 |
-
items: A document object, dictionary, or list of either.
|
| 891 |
-
Can also be a dictionary mapping filenames to lists of documents.
|
| 892 |
-
|
| 893 |
-
Returns:
|
| 894 |
-
Converted item(s) maintaining the original structure
|
| 895 |
-
"""
|
| 896 |
-
# Handle empty or None input
|
| 897 |
-
if not items:
|
| 898 |
-
return []
|
| 899 |
-
|
| 900 |
-
# Handle dictionary mapping filenames to document lists (from load_pdf_data)
|
| 901 |
-
if isinstance(items, dict) and all(isinstance(v, list) for v in items.values()):
|
| 902 |
-
result = {}
|
| 903 |
-
for filename, doc_list in items.items():
|
| 904 |
-
result[filename] = llamaindex_convert_docs(doc_list)
|
| 905 |
-
return result
|
| 906 |
-
|
| 907 |
-
# Handle single items (not in a list)
|
| 908 |
-
if not isinstance(items, list):
|
| 909 |
-
# Single dictionary to document
|
| 910 |
-
if isinstance(items, dict):
|
| 911 |
-
# Determine document class
|
| 912 |
-
doc_class = None
|
| 913 |
-
if 'doc_type' in items:
|
| 914 |
-
import importlib
|
| 915 |
-
module_path, class_name = items['doc_type'].rsplit('.', 1)
|
| 916 |
-
module = importlib.import_module(module_path)
|
| 917 |
-
doc_class = getattr(module, class_name)
|
| 918 |
-
if not doc_class:
|
| 919 |
-
from llama_index.core.schema import Document
|
| 920 |
-
doc_class = Document
|
| 921 |
-
return doc_class.from_dict(items)
|
| 922 |
-
# Single document to dictionary
|
| 923 |
-
elif hasattr(items, 'to_dict'):
|
| 924 |
-
return items.to_dict()
|
| 925 |
-
# Return as is if can't convert
|
| 926 |
-
return items
|
| 927 |
-
|
| 928 |
-
# Handle list input
|
| 929 |
-
result = []
|
| 930 |
-
|
| 931 |
-
# Handle empty list
|
| 932 |
-
if len(items) == 0:
|
| 933 |
-
return result
|
| 934 |
-
|
| 935 |
-
# Determine the type of conversion based on the first non-None item
|
| 936 |
-
first_item = next((item for item in items if item is not None), None)
|
| 937 |
-
|
| 938 |
-
# If we found no non-None items, return empty list
|
| 939 |
-
if first_item is None:
|
| 940 |
-
return result
|
| 941 |
-
|
| 942 |
-
# Convert dictionaries to documents
|
| 943 |
-
if isinstance(first_item, dict):
|
| 944 |
-
# Get the right document class from the items themselves
|
| 945 |
-
doc_class = None
|
| 946 |
-
# Try to get doc class from metadata if available
|
| 947 |
-
if 'doc_type' in first_item:
|
| 948 |
-
import importlib
|
| 949 |
-
module_path, class_name = first_item['doc_type'].rsplit('.', 1)
|
| 950 |
-
module = importlib.import_module(module_path)
|
| 951 |
-
doc_class = getattr(module, class_name)
|
| 952 |
-
if not doc_class:
|
| 953 |
-
# Fallback to default Document class from llama_index
|
| 954 |
-
from llama_index.core.schema import Document
|
| 955 |
-
doc_class = Document
|
| 956 |
-
|
| 957 |
-
# Convert each dictionary to document
|
| 958 |
-
for item in items:
|
| 959 |
-
if isinstance(item, dict):
|
| 960 |
-
result.append(doc_class.from_dict(item))
|
| 961 |
-
elif item is None:
|
| 962 |
-
result.append(None)
|
| 963 |
-
elif isinstance(item, list):
|
| 964 |
-
result.append(llamaindex_convert_docs(item))
|
| 965 |
-
else:
|
| 966 |
-
result.append(item)
|
| 967 |
-
|
| 968 |
-
# Convert documents to dictionaries
|
| 969 |
-
else:
|
| 970 |
-
for item in items:
|
| 971 |
-
if hasattr(item, 'to_dict'):
|
| 972 |
-
result.append(item.to_dict())
|
| 973 |
-
elif item is None:
|
| 974 |
-
result.append(None)
|
| 975 |
-
elif isinstance(item, list):
|
| 976 |
-
result.append(llamaindex_convert_docs(item))
|
| 977 |
-
else:
|
| 978 |
-
result.append(item)
|
| 979 |
-
|
| 980 |
-
return result
|
| 981 |
-
|
| 982 |
-
def llamaindex_convert_docs(items):
|
| 983 |
-
"""
|
| 984 |
-
Automatically convert between document objects and dictionaries.
|
| 985 |
-
|
| 986 |
-
Args:
|
| 987 |
-
items: A list of document objects or dictionaries
|
| 988 |
-
|
| 989 |
-
Returns:
|
| 990 |
-
List of converted items (dictionaries or document objects)
|
| 991 |
-
"""
|
| 992 |
-
result = []
|
| 993 |
-
|
| 994 |
-
# Handle empty or None input
|
| 995 |
-
if not items:
|
| 996 |
-
return result
|
| 997 |
-
|
| 998 |
-
# Determine the type of conversion based on the first item
|
| 999 |
-
if isinstance(items[0], dict):
|
| 1000 |
-
# Get the right document class from the items themselves
|
| 1001 |
-
# Look for a 'doc_type' or '__class__' field in the dictionary
|
| 1002 |
-
doc_class = None
|
| 1003 |
-
|
| 1004 |
-
# Try to get doc class from metadata if available
|
| 1005 |
-
if 'doc_type' in items[0]:
|
| 1006 |
-
import importlib
|
| 1007 |
-
module_path, class_name = items[0]['doc_type'].rsplit('.', 1)
|
| 1008 |
-
module = importlib.import_module(module_path)
|
| 1009 |
-
doc_class = getattr(module, class_name)
|
| 1010 |
-
|
| 1011 |
-
if not doc_class:
|
| 1012 |
-
# Fallback to default Document class from llama_index
|
| 1013 |
-
from llama_index.core.schema import Document
|
| 1014 |
-
doc_class = Document
|
| 1015 |
-
|
| 1016 |
-
# Convert dictionaries to documents
|
| 1017 |
-
for item in items:
|
| 1018 |
-
if isinstance(item, dict):
|
| 1019 |
-
result.append(doc_class.from_dict(item))
|
| 1020 |
-
else:
|
| 1021 |
-
# Convert documents to dictionaries
|
| 1022 |
-
for item in items:
|
| 1023 |
-
if hasattr(item, 'to_dict'):
|
| 1024 |
-
result.append(item.to_dict())
|
| 1025 |
-
|
| 1026 |
-
return result
|
| 1027 |
-
return (llamaindex_convert_docs_multi,)
|
| 1028 |
-
|
| 1029 |
-
|
| 1030 |
-
@app.cell
|
| 1031 |
-
def helper_function_create_df():
|
| 1032 |
-
def create_document_dataframes(dict_from_docs):
|
| 1033 |
-
"""
|
| 1034 |
-
Creates a pandas DataFrame for each file in the dictionary.
|
| 1035 |
-
|
| 1036 |
-
Args:
|
| 1037 |
-
dict_from_docs: Dictionary mapping filenames to lists of documents
|
| 1038 |
-
|
| 1039 |
-
Returns:
|
| 1040 |
-
List of pandas DataFrames, each representing all documents from a single file
|
| 1041 |
-
"""
|
| 1042 |
-
dataframes = []
|
| 1043 |
-
|
| 1044 |
-
for filename, docs in dict_from_docs.items():
|
| 1045 |
-
# Create a list to hold all document records for this file
|
| 1046 |
-
file_records = []
|
| 1047 |
-
|
| 1048 |
-
for i, doc in enumerate(docs):
|
| 1049 |
-
# Convert the document to a format compatible with DataFrame
|
| 1050 |
-
if hasattr(doc, 'to_dict'):
|
| 1051 |
-
doc_data = doc.to_dict()
|
| 1052 |
-
elif isinstance(doc, dict):
|
| 1053 |
-
doc_data = doc
|
| 1054 |
-
else:
|
| 1055 |
-
doc_data = {'content': str(doc)}
|
| 1056 |
-
|
| 1057 |
-
# Add document index information
|
| 1058 |
-
doc_data['doc_index'] = i
|
| 1059 |
-
|
| 1060 |
-
# Add to the list of records for this file
|
| 1061 |
-
file_records.append(doc_data)
|
| 1062 |
-
|
| 1063 |
-
# Create a single DataFrame for all documents in this file
|
| 1064 |
-
if file_records:
|
| 1065 |
-
df = pd.DataFrame(file_records)
|
| 1066 |
-
df['filename'] = filename # Add filename as a column
|
| 1067 |
-
dataframes.append(df)
|
| 1068 |
-
|
| 1069 |
-
return dataframes
|
| 1070 |
-
|
| 1071 |
-
def create_dataframe_previews(dataframe_list, page_size=5):
|
| 1072 |
-
"""
|
| 1073 |
-
Creates a list of mo.ui.dataframe components, one for each DataFrame in the input list.
|
| 1074 |
-
|
| 1075 |
-
Args:
|
| 1076 |
-
dataframe_list: List of pandas DataFrames (output from create_document_dataframes)
|
| 1077 |
-
page_size: Number of rows to show per page for each component
|
| 1078 |
-
|
| 1079 |
-
Returns:
|
| 1080 |
-
List of mo.ui.dataframe components
|
| 1081 |
-
"""
|
| 1082 |
-
# Create a list of mo.ui.dataframe components
|
| 1083 |
-
preview_components = []
|
| 1084 |
-
|
| 1085 |
-
for df in dataframe_list:
|
| 1086 |
-
# Create a mo.ui.dataframe component for this DataFrame
|
| 1087 |
-
preview = mo.ui.dataframe(df, page_size=page_size)
|
| 1088 |
-
preview_components.append(preview)
|
| 1089 |
-
|
| 1090 |
-
return preview_components
|
| 1091 |
-
return
|
| 1092 |
-
|
| 1093 |
-
|
| 1094 |
-
@app.cell
|
| 1095 |
-
def helper_function_chart_preparation():
|
| 1096 |
-
import altair as alt
|
| 1097 |
-
import numpy as np
|
| 1098 |
-
import plotly.express as px
|
| 1099 |
-
from sklearn.manifold import TSNE
|
| 1100 |
-
|
| 1101 |
-
def prepare_embedding_data(embeddings, texts, model_id=None, embedding_dimensions=None):
|
| 1102 |
-
"""
|
| 1103 |
-
Prepare embedding data for visualization
|
| 1104 |
-
|
| 1105 |
-
Args:
|
| 1106 |
-
embeddings: List of embeddings arrays
|
| 1107 |
-
texts: List of text strings
|
| 1108 |
-
model_id: Embedding model ID (optional)
|
| 1109 |
-
embedding_dimensions: Embedding dimensions (optional)
|
| 1110 |
-
|
| 1111 |
-
Returns:
|
| 1112 |
-
DataFrame with processed data and metadata
|
| 1113 |
-
"""
|
| 1114 |
-
# Flatten embeddings (in case they're nested)
|
| 1115 |
-
flattened_embeddings = []
|
| 1116 |
-
for emb in embeddings:
|
| 1117 |
-
if isinstance(emb, list) and len(emb) > 0 and isinstance(emb[0], list):
|
| 1118 |
-
flattened_embeddings.append(emb[0]) # Take first element if nested
|
| 1119 |
-
else:
|
| 1120 |
-
flattened_embeddings.append(emb)
|
| 1121 |
-
|
| 1122 |
-
# Convert to numpy array
|
| 1123 |
-
embedding_array = np.array(flattened_embeddings)
|
| 1124 |
-
|
| 1125 |
-
# Apply dimensionality reduction (t-SNE)
|
| 1126 |
-
tsne = TSNE(n_components=2, random_state=42, perplexity=min(30, len(embedding_array)-1))
|
| 1127 |
-
reduced_embeddings = tsne.fit_transform(embedding_array)
|
| 1128 |
-
|
| 1129 |
-
# Create truncated texts for display
|
| 1130 |
-
truncated_texts = [text[:50] + "..." if len(text) > 50 else text for text in texts]
|
| 1131 |
-
|
| 1132 |
-
# Create dataframe for visualization
|
| 1133 |
-
df = pd.DataFrame({
|
| 1134 |
-
"x": reduced_embeddings[:, 0],
|
| 1135 |
-
"y": reduced_embeddings[:, 1],
|
| 1136 |
-
"text": truncated_texts,
|
| 1137 |
-
"full_text": texts,
|
| 1138 |
-
"index": range(len(texts))
|
| 1139 |
-
})
|
| 1140 |
-
|
| 1141 |
-
# Add metadata
|
| 1142 |
-
metadata = {
|
| 1143 |
-
"model_id": model_id,
|
| 1144 |
-
"embedding_dimensions": embedding_dimensions
|
| 1145 |
-
}
|
| 1146 |
-
|
| 1147 |
-
return df, metadata
|
| 1148 |
-
|
| 1149 |
-
def create_embedding_chart(df, metadata=None):
|
| 1150 |
-
"""
|
| 1151 |
-
Create an Altair chart for embedding visualization
|
| 1152 |
-
|
| 1153 |
-
Args:
|
| 1154 |
-
df: DataFrame with x, y coordinates and text
|
| 1155 |
-
metadata: Dictionary with model_id and embedding_dimensions
|
| 1156 |
-
|
| 1157 |
-
Returns:
|
| 1158 |
-
Altair chart
|
| 1159 |
-
"""
|
| 1160 |
-
model_id = metadata.get("model_id") if metadata else None
|
| 1161 |
-
embedding_dimensions = metadata.get("embedding_dimensions") if metadata else None
|
| 1162 |
-
|
| 1163 |
-
selection = alt.selection_multi(fields=['index'])
|
| 1164 |
-
|
| 1165 |
-
base = alt.Chart(df).encode(
|
| 1166 |
-
x=alt.X("x:Q", title="Dimension 1"),
|
| 1167 |
-
y=alt.Y("y:Q", title="Dimension 2"),
|
| 1168 |
-
tooltip=["text", "index"]
|
| 1169 |
-
)
|
| 1170 |
-
|
| 1171 |
-
points = base.mark_circle(size=100).encode(
|
| 1172 |
-
color=alt.Color("index:N", legend=None),
|
| 1173 |
-
opacity=alt.condition(selection, alt.value(1), alt.value(0.2))
|
| 1174 |
-
).add_selection(selection) # Add this line to apply the selection
|
| 1175 |
-
|
| 1176 |
-
text = base.mark_text(align="left", dx=7).encode(
|
| 1177 |
-
text="index:N"
|
| 1178 |
-
)
|
| 1179 |
-
|
| 1180 |
-
return (points + text).properties(
|
| 1181 |
-
width=700,
|
| 1182 |
-
height=500,
|
| 1183 |
-
title=f"Embedding Visualization{f' - Model: {model_id}' if model_id else ''}{f' ({embedding_dimensions} dimensions)' if embedding_dimensions else ''}"
|
| 1184 |
-
).interactive()
|
| 1185 |
-
|
| 1186 |
-
def show_selected_text(indices, texts):
|
| 1187 |
-
"""
|
| 1188 |
-
Create markdown display for selected texts
|
| 1189 |
-
|
| 1190 |
-
Args:
|
| 1191 |
-
indices: List of selected indices
|
| 1192 |
-
texts: List of all texts
|
| 1193 |
-
|
| 1194 |
-
Returns:
|
| 1195 |
-
Markdown string
|
| 1196 |
-
"""
|
| 1197 |
-
if not indices:
|
| 1198 |
-
return "No text selected"
|
| 1199 |
-
|
| 1200 |
-
selected_texts = [texts[i] for i in indices if i < len(texts)]
|
| 1201 |
-
return "\n\n".join([f"**Document {i}**:\n{text}" for i, text in zip(indices, selected_texts)])
|
| 1202 |
-
|
| 1203 |
-
def prepare_embedding_data_3d(embeddings, texts, model_id=None, embedding_dimensions=None):
|
| 1204 |
-
"""
|
| 1205 |
-
Prepare embedding data for 3D visualization
|
| 1206 |
-
|
| 1207 |
-
Args:
|
| 1208 |
-
embeddings: List of embeddings arrays
|
| 1209 |
-
texts: List of text strings
|
| 1210 |
-
model_id: Embedding model ID (optional)
|
| 1211 |
-
embedding_dimensions: Embedding dimensions (optional)
|
| 1212 |
-
|
| 1213 |
-
Returns:
|
| 1214 |
-
DataFrame with processed data and metadata
|
| 1215 |
-
"""
|
| 1216 |
-
# Flatten embeddings (in case they're nested)
|
| 1217 |
-
flattened_embeddings = []
|
| 1218 |
-
for emb in embeddings:
|
| 1219 |
-
if isinstance(emb, list) and len(emb) > 0 and isinstance(emb[0], list):
|
| 1220 |
-
flattened_embeddings.append(emb[0])
|
| 1221 |
-
else:
|
| 1222 |
-
flattened_embeddings.append(emb)
|
| 1223 |
-
|
| 1224 |
-
# Convert to numpy array
|
| 1225 |
-
embedding_array = np.array(flattened_embeddings)
|
| 1226 |
-
|
| 1227 |
-
# Handle the case of a single embedding differently
|
| 1228 |
-
if len(embedding_array) == 1:
|
| 1229 |
-
# For a single point, we don't need t-SNE, just use a fixed position
|
| 1230 |
-
reduced_embeddings = np.array([[0.0, 0.0, 0.0]])
|
| 1231 |
-
else:
|
| 1232 |
-
# Apply dimensionality reduction to 3D
|
| 1233 |
-
# Fix: Ensure perplexity is at least 1.0
|
| 1234 |
-
perplexity_value = max(1.0, min(30, len(embedding_array)-1))
|
| 1235 |
-
tsne = TSNE(n_components=3, random_state=42, perplexity=perplexity_value)
|
| 1236 |
-
reduced_embeddings = tsne.fit_transform(embedding_array)
|
| 1237 |
-
|
| 1238 |
-
# Format texts for display
|
| 1239 |
-
formatted_texts = []
|
| 1240 |
-
for text in texts:
|
| 1241 |
-
# Truncate if needed
|
| 1242 |
-
if len(text) > 500:
|
| 1243 |
-
text = text[:500] + "..."
|
| 1244 |
-
|
| 1245 |
-
# Insert line breaks for wrapping
|
| 1246 |
-
wrapped_text = ""
|
| 1247 |
-
for i in range(0, len(text), 50):
|
| 1248 |
-
wrapped_text += text[i:i+50] + "<br>"
|
| 1249 |
-
|
| 1250 |
-
formatted_texts.append("<b>"+wrapped_text+"</b>")
|
| 1251 |
-
|
| 1252 |
-
# Create dataframe for visualization
|
| 1253 |
-
df = pd.DataFrame({
|
| 1254 |
-
"x": reduced_embeddings[:, 0],
|
| 1255 |
-
"y": reduced_embeddings[:, 1],
|
| 1256 |
-
"z": reduced_embeddings[:, 2],
|
| 1257 |
-
"text": formatted_texts,
|
| 1258 |
-
"full_text": texts,
|
| 1259 |
-
"index": range(len(texts)),
|
| 1260 |
-
"embedding": flattened_embeddings # Store the original embeddings for later use
|
| 1261 |
-
})
|
| 1262 |
-
|
| 1263 |
-
# Add metadata
|
| 1264 |
-
metadata = {
|
| 1265 |
-
"model_id": model_id,
|
| 1266 |
-
"embedding_dimensions": embedding_dimensions
|
| 1267 |
-
}
|
| 1268 |
-
|
| 1269 |
-
return df, metadata
|
| 1270 |
-
|
| 1271 |
-
def create_3d_embedding_chart(df, metadata=None, chart_width=1200, chart_height=800, marker_size_var: int=3):
|
| 1272 |
-
"""
|
| 1273 |
-
Create a 3D Plotly chart for embedding visualization with proximity-based coloring
|
| 1274 |
-
"""
|
| 1275 |
-
model_id = metadata.get("model_id") if metadata else None
|
| 1276 |
-
embedding_dimensions = metadata.get("embedding_dimensions") if metadata else None
|
| 1277 |
-
|
| 1278 |
-
# Calculate the proximity between points
|
| 1279 |
-
from scipy.spatial.distance import pdist, squareform
|
| 1280 |
-
# Get the coordinates as a numpy array
|
| 1281 |
-
coords = df[['x', 'y', 'z']].values
|
| 1282 |
-
|
| 1283 |
-
# Calculate pairwise distances
|
| 1284 |
-
dist_matrix = squareform(pdist(coords))
|
| 1285 |
-
|
| 1286 |
-
# For each point, find its average distance to all other points
|
| 1287 |
-
avg_distances = np.mean(dist_matrix, axis=1)
|
| 1288 |
-
|
| 1289 |
-
# Add this to the dataframe - smaller values = closer to other points
|
| 1290 |
-
df['proximity'] = avg_distances
|
| 1291 |
-
|
| 1292 |
-
# Create 3D scatter plot with proximity-based coloring
|
| 1293 |
-
fig = px.scatter_3d(
|
| 1294 |
-
df,
|
| 1295 |
-
x='x',
|
| 1296 |
-
y='y',
|
| 1297 |
-
z='z',
|
| 1298 |
-
# x='petal_length', # Changed from 'x' to 'petal_length'
|
| 1299 |
-
# y='petal_width', # Changed from 'y' to 'petal_width'
|
| 1300 |
-
# z='petal_height',
|
| 1301 |
-
color='proximity', # Color based on proximity
|
| 1302 |
-
color_continuous_scale='Viridis_r', # Reversed so closer points are warmer colors
|
| 1303 |
-
hover_data=['text', 'index', 'proximity'],
|
| 1304 |
-
labels={'x': 'Dimension 1', 'y': 'Dimension 2', 'z': 'Dimension 3', 'proximity': 'Avg Distance'},
|
| 1305 |
-
# labels={'x': 'Dimension 1', 'y': 'Dimension 2', 'z': 'Dimension 3', 'proximity': 'Avg Distance'},
|
| 1306 |
-
title=f"<b>3D Embedding Visualization</b>{f' - Model: <b>{model_id}</b>' if model_id else ''}{f' <i>({embedding_dimensions} dimensions)</i>' if embedding_dimensions else ''}",
|
| 1307 |
-
text='index',
|
| 1308 |
-
# size_max=marker_size_var
|
| 1309 |
-
)
|
| 1310 |
-
|
| 1311 |
-
# Update marker size and layout
|
| 1312 |
-
# fig.update_traces(marker=dict(size=3), selector=dict(mode='markers'))
|
| 1313 |
-
fig.update_traces(
|
| 1314 |
-
marker=dict(
|
| 1315 |
-
size=marker_size_var, # Very small marker size
|
| 1316 |
-
opacity=0.7, # Slightly transparent
|
| 1317 |
-
symbol="diamond", # Use circle markers (other options: "square", "diamond", "cross", "x")
|
| 1318 |
-
line=dict(
|
| 1319 |
-
width=0.5, # Very thin border
|
| 1320 |
-
color="white" # White outline makes small dots more visible
|
| 1321 |
-
)
|
| 1322 |
-
),
|
| 1323 |
-
textfont=dict(
|
| 1324 |
-
color="rgba(255, 255, 255, 0.3)",
|
| 1325 |
-
size=8
|
| 1326 |
-
),
|
| 1327 |
-
# hovertemplate="<b>index=%{text}</b><br>%{customdata[0]}<br><br>Avg Distance=%{customdata[2]:.4f}<extra></extra>", ### Hover Changes
|
| 1328 |
-
hovertemplate="text:<br><b>%{customdata[0]}</b><br>index: <b>%{text}</b><br><br>Avg Distance: <b>%{customdata[2]:.4f}</b><extra></extra>",
|
| 1329 |
-
hoverinfo="text+name",
|
| 1330 |
-
hoverlabel=dict(
|
| 1331 |
-
bgcolor="white", # White background for hover labels
|
| 1332 |
-
font_size=12 # Font size for hover text
|
| 1333 |
-
),
|
| 1334 |
-
selector=dict(type='scatter3d')
|
| 1335 |
-
)
|
| 1336 |
-
|
| 1337 |
-
# Keep your existing layout settings
|
| 1338 |
-
fig.update_layout(
|
| 1339 |
-
scene=dict(
|
| 1340 |
-
xaxis=dict(
|
| 1341 |
-
title='Dimension 1',
|
| 1342 |
-
nticks=40,
|
| 1343 |
-
backgroundcolor="rgb(10, 10, 20, 0.1)",
|
| 1344 |
-
gridcolor="white",
|
| 1345 |
-
showbackground=True,
|
| 1346 |
-
gridwidth=0.35,
|
| 1347 |
-
zerolinecolor="white",
|
| 1348 |
-
),
|
| 1349 |
-
yaxis=dict(
|
| 1350 |
-
title='Dimension 2',
|
| 1351 |
-
nticks=40,
|
| 1352 |
-
backgroundcolor="rgb(10, 10, 20, 0.1)",
|
| 1353 |
-
gridcolor="white",
|
| 1354 |
-
showbackground=True,
|
| 1355 |
-
gridwidth=0.35,
|
| 1356 |
-
zerolinecolor="white",
|
| 1357 |
-
),
|
| 1358 |
-
zaxis=dict(
|
| 1359 |
-
title='Dimension 3',
|
| 1360 |
-
nticks=40,
|
| 1361 |
-
backgroundcolor="rgb(10, 10, 20, 0.1)",
|
| 1362 |
-
gridcolor="white",
|
| 1363 |
-
showbackground=True,
|
| 1364 |
-
gridwidth=0.35,
|
| 1365 |
-
zerolinecolor="white",
|
| 1366 |
-
),
|
| 1367 |
-
# Control camera view angle
|
| 1368 |
-
camera=dict(
|
| 1369 |
-
up=dict(x=0, y=0, z=1),
|
| 1370 |
-
center=dict(x=0, y=0, z=0),
|
| 1371 |
-
eye=dict(x=1.25, y=1.25, z=1.25),
|
| 1372 |
-
),
|
| 1373 |
-
aspectratio=dict(x=1, y=1, z=1),
|
| 1374 |
-
aspectmode='data'
|
| 1375 |
-
),
|
| 1376 |
-
width=int(chart_width),
|
| 1377 |
-
height=int(chart_height),
|
| 1378 |
-
margin=dict(r=20, l=10, b=10, t=50),
|
| 1379 |
-
paper_bgcolor="rgb(0, 0, 0)",
|
| 1380 |
-
plot_bgcolor="rgb(0, 0, 0)",
|
| 1381 |
-
coloraxis_colorbar=dict(
|
| 1382 |
-
title="Average Distance",
|
| 1383 |
-
thicknessmode="pixels", thickness=20,
|
| 1384 |
-
lenmode="pixels", len=400,
|
| 1385 |
-
yanchor="top", y=1,
|
| 1386 |
-
ticks="outside",
|
| 1387 |
-
dtick=0.1
|
| 1388 |
-
)
|
| 1389 |
-
)
|
| 1390 |
-
|
| 1391 |
-
return fig
|
| 1392 |
-
return create_3d_embedding_chart, prepare_embedding_data_3d
|
| 1393 |
-
|
| 1394 |
-
|
| 1395 |
-
@app.cell
|
| 1396 |
-
def helper_function_text_preparation():
|
| 1397 |
-
def convert_table_to_json_docs(df, selected_columns=None):
|
| 1398 |
-
"""
|
| 1399 |
-
Convert a pandas DataFrame or dictionary to a list of JSON documents.
|
| 1400 |
-
Dynamically includes columns based on user selection.
|
| 1401 |
-
Column names are standardized to lowercase with underscores instead of spaces
|
| 1402 |
-
and special characters removed.
|
| 1403 |
-
|
| 1404 |
-
Args:
|
| 1405 |
-
df: The DataFrame or dictionary to process
|
| 1406 |
-
selected_columns: List of column names to include in the output documents
|
| 1407 |
-
|
| 1408 |
-
Returns:
|
| 1409 |
-
list: A list of dictionaries, each representing a row as a JSON document
|
| 1410 |
-
"""
|
| 1411 |
-
import pandas as pd
|
| 1412 |
-
import re
|
| 1413 |
-
|
| 1414 |
-
def standardize_key(key):
|
| 1415 |
-
"""Convert a column name to lowercase with underscores instead of spaces and no special characters"""
|
| 1416 |
-
if not isinstance(key, str):
|
| 1417 |
-
return str(key).lower()
|
| 1418 |
-
# Replace spaces with underscores and convert to lowercase
|
| 1419 |
-
key = key.lower().replace(' ', '_')
|
| 1420 |
-
# Remove special characters (keeping alphanumeric and underscores)
|
| 1421 |
-
return re.sub(r'[^\w]', '', key)
|
| 1422 |
-
|
| 1423 |
-
# Handle case when input is a dictionary
|
| 1424 |
-
if isinstance(df, dict):
|
| 1425 |
-
# Filter the dictionary to include only selected columns
|
| 1426 |
-
if selected_columns:
|
| 1427 |
-
return [{standardize_key(k): df.get(k, None) for k in selected_columns}]
|
| 1428 |
-
else:
|
| 1429 |
-
# If no columns selected, return all key-value pairs with standardized keys
|
| 1430 |
-
return [{standardize_key(k): v for k, v in df.items()}]
|
| 1431 |
-
|
| 1432 |
-
# Handle case when df is None
|
| 1433 |
-
if df is None:
|
| 1434 |
-
return []
|
| 1435 |
-
|
| 1436 |
-
# Ensure df is a DataFrame
|
| 1437 |
-
if not isinstance(df, pd.DataFrame):
|
| 1438 |
-
try:
|
| 1439 |
-
df = pd.DataFrame(df)
|
| 1440 |
-
except:
|
| 1441 |
-
return [] # Return empty list if conversion fails
|
| 1442 |
-
|
| 1443 |
-
# Now check if DataFrame is empty
|
| 1444 |
-
if df.empty:
|
| 1445 |
-
return []
|
| 1446 |
-
|
| 1447 |
-
# If no columns are specifically selected, use all available columns
|
| 1448 |
-
if not selected_columns or not isinstance(selected_columns, list) or len(selected_columns) == 0:
|
| 1449 |
-
selected_columns = list(df.columns)
|
| 1450 |
-
|
| 1451 |
-
# Determine which columns exist in the DataFrame
|
| 1452 |
-
available_columns = []
|
| 1453 |
-
columns_lower = {col.lower(): col for col in df.columns if isinstance(col, str)}
|
| 1454 |
-
|
| 1455 |
-
for col in selected_columns:
|
| 1456 |
-
if col in df.columns:
|
| 1457 |
-
available_columns.append(col)
|
| 1458 |
-
elif isinstance(col, str) and col.lower() in columns_lower:
|
| 1459 |
-
available_columns.append(columns_lower[col.lower()])
|
| 1460 |
-
|
| 1461 |
-
# If no valid columns found, return empty list
|
| 1462 |
-
if not available_columns:
|
| 1463 |
-
return []
|
| 1464 |
-
|
| 1465 |
-
# Process rows
|
| 1466 |
-
json_docs = []
|
| 1467 |
-
for _, row in df.iterrows():
|
| 1468 |
-
doc = {}
|
| 1469 |
-
for col in available_columns:
|
| 1470 |
-
value = row[col]
|
| 1471 |
-
# Standardize the column name when adding to document
|
| 1472 |
-
std_col = standardize_key(col)
|
| 1473 |
-
doc[std_col] = None if pd.isna(value) else value
|
| 1474 |
-
json_docs.append(doc)
|
| 1475 |
-
|
| 1476 |
-
return json_docs
|
| 1477 |
-
|
| 1478 |
-
def get_column_values(df, columns_to_include):
|
| 1479 |
-
"""
|
| 1480 |
-
Extract values from specified columns of a dataframe as lists.
|
| 1481 |
-
|
| 1482 |
-
Args:
|
| 1483 |
-
df: A pandas DataFrame
|
| 1484 |
-
columns_to_include: A list of column names to extract
|
| 1485 |
-
|
| 1486 |
-
Returns:
|
| 1487 |
-
Dictionary with column names as keys and their values as lists
|
| 1488 |
-
"""
|
| 1489 |
-
result = {}
|
| 1490 |
-
|
| 1491 |
-
# Validate that columns exist in the dataframe
|
| 1492 |
-
valid_columns = [col for col in columns_to_include if col in df.columns]
|
| 1493 |
-
invalid_columns = set(columns_to_include) - set(valid_columns)
|
| 1494 |
-
|
| 1495 |
-
if invalid_columns:
|
| 1496 |
-
print(f"Warning: These columns don't exist in the dataframe: {list(invalid_columns)}")
|
| 1497 |
-
|
| 1498 |
-
# Extract values for each valid column
|
| 1499 |
-
for col in valid_columns:
|
| 1500 |
-
result[col] = df[col].tolist()
|
| 1501 |
-
|
| 1502 |
-
return result
|
| 1503 |
-
|
| 1504 |
-
def get_data_in_range(doc_dict_df, index_range, columns_to_include):
|
| 1505 |
-
"""
|
| 1506 |
-
Extract values from specified columns of a dataframe within a given index range.
|
| 1507 |
-
|
| 1508 |
-
Args:
|
| 1509 |
-
doc_dict_df: The pandas DataFrame to extract data from
|
| 1510 |
-
index_range: An integer specifying the number of rows to include (from 0 to index_range-1)
|
| 1511 |
-
columns_to_include: A list of column names to extract
|
| 1512 |
-
|
| 1513 |
-
Returns:
|
| 1514 |
-
Dictionary with column names as keys and their values (within the index range) as lists
|
| 1515 |
-
"""
|
| 1516 |
-
# Validate the index range
|
| 1517 |
-
max_index = len(doc_dict_df)
|
| 1518 |
-
if index_range <= 0:
|
| 1519 |
-
print(f"Warning: Invalid index range {index_range}. Must be positive.")
|
| 1520 |
-
return {}
|
| 1521 |
-
|
| 1522 |
-
# Adjust index_range if it exceeds the dataframe length
|
| 1523 |
-
if index_range > max_index:
|
| 1524 |
-
print(f"Warning: Index range {index_range} exceeds dataframe length {max_index}. Using maximum length.")
|
| 1525 |
-
index_range = max_index
|
| 1526 |
-
|
| 1527 |
-
# Slice the dataframe to get rows from 0 to index_range-1
|
| 1528 |
-
df_subset = doc_dict_df.iloc[:index_range]
|
| 1529 |
-
|
| 1530 |
-
# Use the provided get_column_values function to extract column data
|
| 1531 |
-
return get_column_values(df_subset, columns_to_include)
|
| 1532 |
-
|
| 1533 |
-
def get_data_in_range_triplequote(doc_dict_df, index_range, columns_to_include):
|
| 1534 |
-
"""
|
| 1535 |
-
Extract values from specified columns of a dataframe within a given index range.
|
| 1536 |
-
Wraps string values with triple quotes and escapes URLs.
|
| 1537 |
-
|
| 1538 |
-
Args:
|
| 1539 |
-
doc_dict_df: The pandas DataFrame to extract data from
|
| 1540 |
-
index_range: A list of two integers specifying the start and end indices of rows to include
|
| 1541 |
-
(e.g., [0, 10] includes rows from index 0 to 9 inclusive)
|
| 1542 |
-
columns_to_include: A list of column names to extract
|
| 1543 |
-
"""
|
| 1544 |
-
# Validate the index range
|
| 1545 |
-
start_idx, end_idx = index_range
|
| 1546 |
-
max_index = len(doc_dict_df)
|
| 1547 |
-
|
| 1548 |
-
# Validate start index
|
| 1549 |
-
if start_idx < 0:
|
| 1550 |
-
print(f"Warning: Invalid start index {start_idx}. Using 0 instead.")
|
| 1551 |
-
start_idx = 0
|
| 1552 |
-
|
| 1553 |
-
# Validate end index
|
| 1554 |
-
if end_idx <= start_idx:
|
| 1555 |
-
print(f"Warning: End index {end_idx} must be greater than start index {start_idx}. Using {start_idx + 1} instead.")
|
| 1556 |
-
end_idx = start_idx + 1
|
| 1557 |
-
|
| 1558 |
-
# Adjust end index if it exceeds the dataframe length
|
| 1559 |
-
if end_idx > max_index:
|
| 1560 |
-
print(f"Warning: End index {end_idx} exceeds dataframe length {max_index}. Using maximum length.")
|
| 1561 |
-
end_idx = max_index
|
| 1562 |
-
|
| 1563 |
-
# Slice the dataframe to get rows from start_idx to end_idx-1
|
| 1564 |
-
# Using .loc with slice to preserve original indices
|
| 1565 |
-
df_subset = doc_dict_df.iloc[start_idx:end_idx]
|
| 1566 |
-
|
| 1567 |
-
# Use the provided get_column_values function to extract column data
|
| 1568 |
-
result = get_column_values(df_subset, columns_to_include)
|
| 1569 |
-
|
| 1570 |
-
# Process each string result to wrap in triple quotes
|
| 1571 |
-
for col in result:
|
| 1572 |
-
if isinstance(result[col], list):
|
| 1573 |
-
# Create a new list with items wrapped in triple quotes
|
| 1574 |
-
processed_items = []
|
| 1575 |
-
for item in result[col]:
|
| 1576 |
-
if isinstance(item, str):
|
| 1577 |
-
# Replace http:// and https:// with escaped versions
|
| 1578 |
-
item = item.replace("http://", "http\\://").replace("https://", "https\\://")
|
| 1579 |
-
# processed_items.append('"""' + item + '"""')
|
| 1580 |
-
processed_items.append(item)
|
| 1581 |
-
else:
|
| 1582 |
-
processed_items.append(item)
|
| 1583 |
-
result[col] = processed_items
|
| 1584 |
-
return result
|
| 1585 |
-
return (get_data_in_range_triplequote,)
|
| 1586 |
-
|
| 1587 |
-
|
| 1588 |
-
@app.cell
|
| 1589 |
-
def prepare_doc_select(sentence_splitter_config):
|
| 1590 |
-
def prepare_document_selection(node_dict):
|
| 1591 |
-
"""
|
| 1592 |
-
Creates document selection UI component.
|
| 1593 |
-
Args:
|
| 1594 |
-
node_dict: Dictionary mapping filenames to lists of documents
|
| 1595 |
-
Returns:
|
| 1596 |
-
mo.ui component for document selection
|
| 1597 |
-
"""
|
| 1598 |
-
# Calculate total number of documents across all files
|
| 1599 |
-
total_docs = sum(len(docs) for docs in node_dict.values())
|
| 1600 |
-
|
| 1601 |
-
# Create a combined DataFrame of all documents for table selection
|
| 1602 |
-
all_docs_records = []
|
| 1603 |
-
doc_index_global = 0
|
| 1604 |
-
for filename, docs in node_dict.items():
|
| 1605 |
-
for i, doc in enumerate(docs):
|
| 1606 |
-
# Convert the document to a format compatible with DataFrame
|
| 1607 |
-
if hasattr(doc, 'to_dict'):
|
| 1608 |
-
doc_data = doc.to_dict()
|
| 1609 |
-
elif isinstance(doc, dict):
|
| 1610 |
-
doc_data = doc
|
| 1611 |
-
else:
|
| 1612 |
-
doc_data = {'content': str(doc)}
|
| 1613 |
-
|
| 1614 |
-
# Add metadata
|
| 1615 |
-
doc_data['filename'] = filename
|
| 1616 |
-
doc_data['doc_index'] = i
|
| 1617 |
-
doc_data['global_index'] = doc_index_global
|
| 1618 |
-
all_docs_records.append(doc_data)
|
| 1619 |
-
doc_index_global += 1
|
| 1620 |
-
|
| 1621 |
-
# Create UI component
|
| 1622 |
-
stop_value = max(total_docs, 2)
|
| 1623 |
-
llama_docs = mo.ui.range_slider(
|
| 1624 |
-
start=1,
|
| 1625 |
-
stop=stop_value,
|
| 1626 |
-
step=1,
|
| 1627 |
-
full_width=True,
|
| 1628 |
-
show_value=True,
|
| 1629 |
-
label="**Select a Range of Chunks to Visualize:**"
|
| 1630 |
-
).form(submit_button_disabled=check_state(sentence_splitter_config.value))
|
| 1631 |
-
|
| 1632 |
-
return llama_docs
|
| 1633 |
-
return (prepare_document_selection,)
|
| 1634 |
-
|
| 1635 |
-
|
| 1636 |
-
@app.cell
|
| 1637 |
-
def document_range_selection(
|
| 1638 |
-
dict_from_nodes,
|
| 1639 |
-
prepare_document_selection,
|
| 1640 |
-
set_range_slider_state,
|
| 1641 |
-
):
|
| 1642 |
-
if dict_from_nodes is not None:
|
| 1643 |
-
llama_docs = prepare_document_selection(dict_from_nodes)
|
| 1644 |
-
set_range_slider_state(llama_docs)
|
| 1645 |
-
else:
|
| 1646 |
-
bare_dict = {}
|
| 1647 |
-
llama_docs = prepare_document_selection(bare_dict)
|
| 1648 |
-
return
|
| 1649 |
-
|
| 1650 |
-
|
| 1651 |
-
@app.function
|
| 1652 |
-
def create_cumulative_dataframe(dict_from_docs):
|
| 1653 |
-
"""
|
| 1654 |
-
Creates a cumulative DataFrame from a nested dictionary of documents.
|
| 1655 |
-
|
| 1656 |
-
Args:
|
| 1657 |
-
dict_from_docs: Dictionary mapping filenames to lists of documents
|
| 1658 |
-
|
| 1659 |
-
Returns:
|
| 1660 |
-
DataFrame with all documents flattened with global indices
|
| 1661 |
-
"""
|
| 1662 |
-
# Create a list to hold all document records
|
| 1663 |
-
all_records = []
|
| 1664 |
-
global_idx = 1 # Start from 1 to match range slider expectations
|
| 1665 |
-
|
| 1666 |
-
for filename, docs in dict_from_docs.items():
|
| 1667 |
-
for i, doc in enumerate(docs):
|
| 1668 |
-
# Convert the document to a dict format
|
| 1669 |
-
if hasattr(doc, 'to_dict'):
|
| 1670 |
-
doc_data = doc.to_dict()
|
| 1671 |
-
elif isinstance(doc, dict):
|
| 1672 |
-
doc_data = doc.copy()
|
| 1673 |
-
else:
|
| 1674 |
-
doc_data = {'content': str(doc)}
|
| 1675 |
-
|
| 1676 |
-
# Add additional metadata
|
| 1677 |
-
doc_data['filename'] = filename
|
| 1678 |
-
doc_data['doc_index'] = i
|
| 1679 |
-
doc_data['global_index'] = global_idx
|
| 1680 |
-
|
| 1681 |
-
# If there's 'content' but no 'text', create a 'text' field
|
| 1682 |
-
if 'content' in doc_data and 'text' not in doc_data:
|
| 1683 |
-
doc_data['text'] = doc_data['content']
|
| 1684 |
-
|
| 1685 |
-
all_records.append(doc_data)
|
| 1686 |
-
global_idx += 1
|
| 1687 |
-
|
| 1688 |
-
# Create DataFrame from all records
|
| 1689 |
-
return pd.DataFrame(all_records)
|
| 1690 |
-
|
| 1691 |
-
|
| 1692 |
-
@app.function
|
| 1693 |
-
def create_stats(texts_dict, bordered=False, object_names=None, group_by_row=False, items_per_row=6, gap=2, label="Chunk"):
|
| 1694 |
-
"""
|
| 1695 |
-
Create a list of stat objects for each item in the specified dictionary.
|
| 1696 |
-
|
| 1697 |
-
Parameters:
|
| 1698 |
-
- texts_dict (dict): Dictionary containing the text data
|
| 1699 |
-
- bordered (bool): Whether the stats should be bordered
|
| 1700 |
-
- object_names (list or tuple): Two object names to use for label and value
|
| 1701 |
-
[label_object, value_object]
|
| 1702 |
-
- group_by_row (bool): Whether to group stats in rows (horizontal stacks)
|
| 1703 |
-
- items_per_row (int): Number of stat objects per row when group_by_row is True
|
| 1704 |
-
|
| 1705 |
-
Returns:
|
| 1706 |
-
- object: A vertical stack of stat objects or rows of stat objects
|
| 1707 |
-
"""
|
| 1708 |
-
if not object_names or len(object_names) < 2:
|
| 1709 |
-
raise ValueError("You must provide two object names as a list or tuple")
|
| 1710 |
-
|
| 1711 |
-
label_object = object_names[0]
|
| 1712 |
-
value_object = object_names[1]
|
| 1713 |
-
|
| 1714 |
-
# Validate that both objects exist in the dictionary
|
| 1715 |
-
if label_object not in texts_dict:
|
| 1716 |
-
raise ValueError(f"Label object '{label_object}' not found in texts_dict")
|
| 1717 |
-
if value_object not in texts_dict:
|
| 1718 |
-
raise ValueError(f"Value object '{value_object}' not found in texts_dict")
|
| 1719 |
-
|
| 1720 |
-
# Determine how many items to process (based on the label object length)
|
| 1721 |
-
num_items = len(texts_dict[label_object])
|
| 1722 |
-
|
| 1723 |
-
# Create individual stat objects
|
| 1724 |
-
individual_stats = []
|
| 1725 |
-
for i in range(num_items):
|
| 1726 |
-
stat = mo.stat(
|
| 1727 |
-
label=texts_dict[label_object][i],
|
| 1728 |
-
value=f"{label} Number: {len(texts_dict[value_object][i])}",
|
| 1729 |
-
bordered=bordered
|
| 1730 |
-
)
|
| 1731 |
-
individual_stats.append(stat)
|
| 1732 |
-
|
| 1733 |
-
# If grouping is not enabled, just return a vertical stack of all stats
|
| 1734 |
-
if not group_by_row:
|
| 1735 |
-
return mo.vstack(individual_stats, wrap=False)
|
| 1736 |
-
|
| 1737 |
-
# Group stats into rows based on items_per_row
|
| 1738 |
-
rows = []
|
| 1739 |
-
for i in range(0, num_items, items_per_row):
|
| 1740 |
-
# Get a slice of stats for this row (up to items_per_row items)
|
| 1741 |
-
row_stats = individual_stats[i:i+items_per_row]
|
| 1742 |
-
# Create a horizontal stack for this row
|
| 1743 |
-
widths = [0.35] * len(row_stats)
|
| 1744 |
-
row = mo.hstack(row_stats, gap=gap, align="start", justify="center", widths=widths)
|
| 1745 |
-
rows.append(row)
|
| 1746 |
-
|
| 1747 |
-
# Return a vertical stack of all rows
|
| 1748 |
-
return mo.vstack(rows)
|
| 1749 |
-
|
| 1750 |
-
|
| 1751 |
-
@app.cell
|
| 1752 |
-
def prepare_chart_embeddings(
|
| 1753 |
-
chunks_to_process,
|
| 1754 |
-
emb_model,
|
| 1755 |
-
emb_model_emb_dim,
|
| 1756 |
-
get_embedding_state,
|
| 1757 |
-
prepare_embedding_data_3d,
|
| 1758 |
-
):
|
| 1759 |
-
# chart_dataframe, chart_metadata = None, None
|
| 1760 |
-
if chunks_to_process is not None and get_embedding_state() is not None:
|
| 1761 |
-
chart_dataframe, chart_metadata = prepare_embedding_data_3d(
|
| 1762 |
-
get_embedding_state(),
|
| 1763 |
-
chunks_to_process,
|
| 1764 |
-
model_id=emb_model,
|
| 1765 |
-
embedding_dimensions=emb_model_emb_dim
|
| 1766 |
-
)
|
| 1767 |
-
else:
|
| 1768 |
-
chart_dataframe, chart_metadata = None, None
|
| 1769 |
-
return chart_dataframe, chart_metadata
|
| 1770 |
-
|
| 1771 |
-
|
| 1772 |
-
@app.cell
|
| 1773 |
-
def chart_dims():
|
| 1774 |
-
chart_dimensions = (
|
| 1775 |
-
mo.md('''
|
| 1776 |
-
> **Adjust Chart Window**
|
| 1777 |
-
|
| 1778 |
-
{chart_height}
|
| 1779 |
-
|
| 1780 |
-
{chat_width}
|
| 1781 |
-
|
| 1782 |
-
''').batch(
|
| 1783 |
-
chart_height = mo.ui.slider(start=500, step=30, stop=1000, label="**Height:**", value=800, show_value=True),
|
| 1784 |
-
chat_width = mo.ui.slider(start=900, step=50, stop=1400, label="**Width:**", value=1200, show_value=True)
|
| 1785 |
-
)
|
| 1786 |
-
)
|
| 1787 |
-
return (chart_dimensions,)
|
| 1788 |
-
|
| 1789 |
-
|
| 1790 |
-
@app.cell
|
| 1791 |
-
def chart_dim_values(chart_dimensions):
|
| 1792 |
-
chart_height = chart_dimensions.value['chart_height']
|
| 1793 |
-
chart_width = chart_dimensions.value['chat_width']
|
| 1794 |
-
return chart_height, chart_width
|
| 1795 |
-
|
| 1796 |
-
|
| 1797 |
-
@app.cell
|
| 1798 |
-
def create_baseline_chart(
|
| 1799 |
-
chart_dataframe,
|
| 1800 |
-
chart_height,
|
| 1801 |
-
chart_metadata,
|
| 1802 |
-
chart_width,
|
| 1803 |
-
create_3d_embedding_chart,
|
| 1804 |
-
):
|
| 1805 |
-
if chart_dataframe is not None and chart_metadata is not None:
|
| 1806 |
-
emb_plot = create_3d_embedding_chart(chart_dataframe, chart_metadata, chart_width, chart_height, marker_size_var=9)
|
| 1807 |
-
chart = mo.ui.plotly(emb_plot)
|
| 1808 |
-
else:
|
| 1809 |
-
emb_plot = None
|
| 1810 |
-
chart = None
|
| 1811 |
-
return (emb_plot,)
|
| 1812 |
-
|
| 1813 |
-
|
| 1814 |
-
@app.cell
|
| 1815 |
-
def test_query(get_chunk_state):
|
| 1816 |
-
placeholder = """How can i use watsonx.data to perform vector search?"""
|
| 1817 |
-
|
| 1818 |
-
query = mo.ui.text_area(label="**Write text to check:**", full_width=True, rows=8, value=placeholder).form(show_clear_button=True, submit_button_disabled=check_state(get_chunk_state()))
|
| 1819 |
-
return (query,)
|
| 1820 |
-
|
| 1821 |
-
|
| 1822 |
-
@app.cell
|
| 1823 |
-
def query_stack(chart_dimensions, query):
|
| 1824 |
-
# query_stack = mo.hstack([query], justify="space-around", align="center", widths=[0.65])
|
| 1825 |
-
query_stack = mo.hstack([query, chart_dimensions], justify="space-around", align="center", gap=15)
|
| 1826 |
-
return (query_stack,)
|
| 1827 |
-
|
| 1828 |
-
|
| 1829 |
-
@app.function
|
| 1830 |
-
def check_state(variable):
|
| 1831 |
-
return variable is None
|
| 1832 |
-
|
| 1833 |
-
|
| 1834 |
-
@app.cell
|
| 1835 |
-
def helper_function_add_query_to_chart():
|
| 1836 |
-
def add_query_to_embedding_chart(existing_chart, query_coords, query_text, marker_size=12):
|
| 1837 |
-
"""
|
| 1838 |
-
Add a query point to an existing 3D embedding chart as a large red dot.
|
| 1839 |
-
|
| 1840 |
-
Args:
|
| 1841 |
-
existing_chart: The existing plotly figure or chart data
|
| 1842 |
-
query_coords: Dictionary with 'x', 'y', 'z' coordinates for the query point
|
| 1843 |
-
query_text: Text of the query to display on hover
|
| 1844 |
-
marker_size: Size of the query marker (default: 18, typically 2x other markers)
|
| 1845 |
-
|
| 1846 |
-
Returns:
|
| 1847 |
-
A modified plotly figure with the query point added as a red dot
|
| 1848 |
-
"""
|
| 1849 |
-
import plotly.graph_objects as go
|
| 1850 |
-
|
| 1851 |
-
# Create a deep copy of the existing chart to avoid modifying the original
|
| 1852 |
-
import copy
|
| 1853 |
-
chart_copy = copy.deepcopy(existing_chart)
|
| 1854 |
-
|
| 1855 |
-
# Handle case where chart_copy is a dictionary or list (from mo.ui.plotly)
|
| 1856 |
-
if isinstance(chart_copy, (dict, list)):
|
| 1857 |
-
# Create a new plotly figure from the data
|
| 1858 |
-
import plotly.graph_objects as go
|
| 1859 |
-
|
| 1860 |
-
if isinstance(chart_copy, list):
|
| 1861 |
-
# If it's a list, assume it's a list of traces
|
| 1862 |
-
fig = go.Figure(data=chart_copy)
|
| 1863 |
-
else:
|
| 1864 |
-
# If it's a dict with 'data' and 'layout'
|
| 1865 |
-
fig = go.Figure(data=chart_copy.get('data', []), layout=chart_copy.get('layout', {}))
|
| 1866 |
-
|
| 1867 |
-
chart_copy = fig
|
| 1868 |
-
|
| 1869 |
-
# Create the query trace
|
| 1870 |
-
query_trace = go.Scatter3d(
|
| 1871 |
-
x=[query_coords['x']],
|
| 1872 |
-
y=[query_coords['y']],
|
| 1873 |
-
z=[query_coords['z']],
|
| 1874 |
-
mode='markers',
|
| 1875 |
-
name='Query',
|
| 1876 |
-
marker=dict(
|
| 1877 |
-
size=marker_size, # Typically 2x the size of other markers
|
| 1878 |
-
color='red', # Bright red color
|
| 1879 |
-
symbol='circle', # Circle shape
|
| 1880 |
-
opacity=0.70, # Fully opaque
|
| 1881 |
-
line=dict(
|
| 1882 |
-
width=1, # Thin white border
|
| 1883 |
-
color='white'
|
| 1884 |
-
)
|
| 1885 |
-
),
|
| 1886 |
-
# text=['Query: ' + query_text],
|
| 1887 |
-
text=['<b>Query:</b><br>' + '<br>'.join([query_text[i:i+50] for i in range(0, len(query_text), 50)])], ### Text Wrapping
|
| 1888 |
-
hoverinfo="text+name"
|
| 1889 |
-
)
|
| 1890 |
-
|
| 1891 |
-
# Add the query trace to the chart copy
|
| 1892 |
-
chart_copy.add_trace(query_trace)
|
| 1893 |
-
|
| 1894 |
-
return chart_copy
|
| 1895 |
-
|
| 1896 |
-
|
| 1897 |
-
def get_query_coordinates(reference_embeddings=None, query_embedding=None):
|
| 1898 |
-
"""
|
| 1899 |
-
Calculate appropriate coordinates for a query point based on reference embeddings.
|
| 1900 |
-
|
| 1901 |
-
This function handles several scenarios:
|
| 1902 |
-
1. If both reference embeddings and query embedding are provided, it places the
|
| 1903 |
-
query near similar documents.
|
| 1904 |
-
2. If only reference embeddings are provided, it places the query at a visible
|
| 1905 |
-
location near the center of the chart.
|
| 1906 |
-
3. If neither are provided, it returns default origin coordinates.
|
| 1907 |
-
|
| 1908 |
-
Args:
|
| 1909 |
-
reference_embeddings: DataFrame with x, y, z coordinates from the main chart
|
| 1910 |
-
query_embedding: The embedding vector of the query
|
| 1911 |
-
|
| 1912 |
-
Returns:
|
| 1913 |
-
Dictionary with x, y, z coordinates for the query point
|
| 1914 |
-
"""
|
| 1915 |
-
import numpy as np
|
| 1916 |
-
|
| 1917 |
-
# Default coordinates (origin with slight offset)
|
| 1918 |
-
default_coords = {'x': 0.0, 'y': 0.0, 'z': 0.0}
|
| 1919 |
-
|
| 1920 |
-
# If we don't have reference embeddings, return default
|
| 1921 |
-
if reference_embeddings is None or len(reference_embeddings) == 0:
|
| 1922 |
-
return default_coords
|
| 1923 |
-
|
| 1924 |
-
# If we have reference embeddings but no query embedding,
|
| 1925 |
-
# position at a visible location near the center
|
| 1926 |
-
if query_embedding is None:
|
| 1927 |
-
center_coords = {
|
| 1928 |
-
'x': reference_embeddings['x'].mean(),
|
| 1929 |
-
'y': reference_embeddings['y'].mean(),
|
| 1930 |
-
'z': reference_embeddings['z'].mean()
|
| 1931 |
-
}
|
| 1932 |
-
return center_coords
|
| 1933 |
-
|
| 1934 |
-
# If we have both reference embeddings and query embedding,
|
| 1935 |
-
# try to position near similar documents
|
| 1936 |
-
try:
|
| 1937 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
| 1938 |
-
|
| 1939 |
-
# Check if original embeddings are in the dataframe
|
| 1940 |
-
if 'embedding' in reference_embeddings.columns:
|
| 1941 |
-
# Get all document embeddings as a 2D array
|
| 1942 |
-
if isinstance(reference_embeddings['embedding'].iloc[0], list):
|
| 1943 |
-
doc_embeddings = np.array(reference_embeddings['embedding'].tolist())
|
| 1944 |
-
else:
|
| 1945 |
-
doc_embeddings = np.array([emb for emb in reference_embeddings['embedding'].values])
|
| 1946 |
-
|
| 1947 |
-
# Reshape query embedding for comparison
|
| 1948 |
-
query_emb_array = np.array(query_embedding)
|
| 1949 |
-
if query_emb_array.ndim == 1:
|
| 1950 |
-
query_emb_array = query_emb_array.reshape(1, -1)
|
| 1951 |
-
|
| 1952 |
-
# Calculate cosine similarities
|
| 1953 |
-
similarities = cosine_similarity(query_emb_array, doc_embeddings)[0]
|
| 1954 |
-
|
| 1955 |
-
# Find the closest document
|
| 1956 |
-
closest_idx = np.argmax(similarities)
|
| 1957 |
-
|
| 1958 |
-
# Use the position of the closest document, with slight offset for visibility
|
| 1959 |
-
query_coords = {
|
| 1960 |
-
'x': reference_embeddings['x'].iloc[closest_idx] + 0.2,
|
| 1961 |
-
'y': reference_embeddings['y'].iloc[closest_idx] + 0.2,
|
| 1962 |
-
'z': reference_embeddings['z'].iloc[closest_idx] + 0.2
|
| 1963 |
-
}
|
| 1964 |
-
return query_coords
|
| 1965 |
-
except Exception as e:
|
| 1966 |
-
print(f"Error positioning query near similar documents: {e}")
|
| 1967 |
-
|
| 1968 |
-
# Fallback to center position if similarity calculation fails
|
| 1969 |
-
center_coords = {
|
| 1970 |
-
'x': reference_embeddings['x'].mean(),
|
| 1971 |
-
'y': reference_embeddings['y'].mean(),
|
| 1972 |
-
'z': reference_embeddings['z'].mean()
|
| 1973 |
-
}
|
| 1974 |
-
return center_coords
|
| 1975 |
-
return add_query_to_embedding_chart, get_query_coordinates
|
| 1976 |
-
|
| 1977 |
-
|
| 1978 |
-
@app.cell
|
| 1979 |
-
def combined_chart_visualization(
|
| 1980 |
-
add_query_to_embedding_chart,
|
| 1981 |
-
chart_dataframe,
|
| 1982 |
-
emb_plot,
|
| 1983 |
-
embedding,
|
| 1984 |
-
get_query_coordinates,
|
| 1985 |
-
get_query_state,
|
| 1986 |
-
query,
|
| 1987 |
-
set_chart_state,
|
| 1988 |
-
set_query_state,
|
| 1989 |
-
):
|
| 1990 |
-
# Usage with highlight_closest=True
|
| 1991 |
-
if chart_dataframe is not None and query.value:
|
| 1992 |
-
# Get the query embedding
|
| 1993 |
-
query_emb = embedding.embed_documents([query.value])
|
| 1994 |
-
set_query_state(query_emb)
|
| 1995 |
-
|
| 1996 |
-
# Get appropriate coordinates for the query
|
| 1997 |
-
query_coords = get_query_coordinates(
|
| 1998 |
-
reference_embeddings=chart_dataframe,
|
| 1999 |
-
query_embedding=get_query_state()
|
| 2000 |
-
)
|
| 2001 |
-
|
| 2002 |
-
# Add the query to the chart with closest points highlighted
|
| 2003 |
-
result = add_query_to_embedding_chart(
|
| 2004 |
-
existing_chart=emb_plot,
|
| 2005 |
-
query_coords=query_coords,
|
| 2006 |
-
query_text=query.value,
|
| 2007 |
-
)
|
| 2008 |
-
|
| 2009 |
-
chart_with_query = result
|
| 2010 |
-
|
| 2011 |
-
# Create the visualization
|
| 2012 |
-
combined_viz = mo.ui.plotly(chart_with_query)
|
| 2013 |
-
set_chart_state(combined_viz)
|
| 2014 |
-
else:
|
| 2015 |
-
combined_viz = None
|
| 2016 |
-
return
|
| 2017 |
-
|
| 2018 |
-
|
| 2019 |
-
@app.cell
|
| 2020 |
-
def _():
|
| 2021 |
-
get_range_slider_state, set_range_slider_state = mo.state(None)
|
| 2022 |
-
return get_range_slider_state, set_range_slider_state
|
| 2023 |
-
|
| 2024 |
-
|
| 2025 |
-
@app.cell
|
| 2026 |
-
def _(get_range_slider_state):
|
| 2027 |
-
if get_range_slider_state() is not None:
|
| 2028 |
-
document_range_stack = get_range_slider_state()
|
| 2029 |
-
else:
|
| 2030 |
-
document_range_stack = None
|
| 2031 |
-
return (document_range_stack,)
|
| 2032 |
-
|
| 2033 |
-
|
| 2034 |
-
@app.cell
|
| 2035 |
-
def _():
|
| 2036 |
-
get_chart_state, set_chart_state = mo.state(None)
|
| 2037 |
-
return get_chart_state, set_chart_state
|
| 2038 |
-
|
| 2039 |
-
|
| 2040 |
-
@app.cell
|
| 2041 |
-
def _(get_chart_state, query):
|
| 2042 |
-
if query.value is not None:
|
| 2043 |
-
chart_visualization = get_chart_state()
|
| 2044 |
-
else:
|
| 2045 |
-
chart_visualization = None
|
| 2046 |
-
return (chart_visualization,)
|
| 2047 |
-
|
| 2048 |
-
|
| 2049 |
-
@app.cell
|
| 2050 |
-
def c(document_range_stack):
|
| 2051 |
-
chart_range_selection = mo.hstack([document_range_stack], justify="space-around", align="center", widths=[0.65])
|
| 2052 |
-
return (chart_range_selection,)
|
| 2053 |
-
|
| 2054 |
-
|
| 2055 |
-
if __name__ == "__main__":
|
| 2056 |
-
app.run()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|