File size: 40,782 Bytes
bc50791 5ad9673 91fad79 bc50791 91fad79 5ad9673 895f730 8ed665f bc50791 5ad9673 8f92a24 97badab bc50791 7a4c273 5ad9673 97badab bc50791 5ad9673 bc50791 97badab bc50791 97badab bc50791 97badab bc50791 97badab bc50791 97badab bc50791 97badab bc50791 97badab bc50791 97badab bc50791 97badab bc50791 91fad79 bc50791 91fad79 bc50791 91fad79 5ad9673 91fad79 5ad9673 91fad79 5ad9673 8ed665f 5ad9673 073ef13 5ad9673 91fad79 5ad9673 91fad79 5ad9673 91fad79 5ad9673 fe35252 5ad9673 79729be 5ad9673 073ef13 5ad9673 bc50791 5ad9673 bc50791 1fad4eb bc50791 5ad9673 bc50791 5ad9673 1fad4eb bc50791 57d1675 91fad79 bef07a7 bc50791 72508d4 91fad79 bc50791 91fad79 bc50791 91fad79 bc50791 91fad79 bc50791 5ad9673 bc50791 91fad79 58c3d9a 5ad9673 8ed665f 073ef13 5ad9673 8ed665f 073ef13 8ed665f 5ad9673 8ed665f 073ef13 8ed665f 58c3d9a 5ad9673 628d310 0aeac8d bc50791 8ed665f 5ad9673 8ed665f 5ad9673 8ed665f 5ad9673 8ed665f 5ad9673 8ed665f 5ad9673 8ed665f 5ad9673 8ed665f 5ad9673 8ed665f 5ad9673 8ed665f 5ad9673 8ed665f 5ad9673 8ed665f 5ad9673 8ed665f 5ad9673 8ed665f 5ad9673 8ed665f 5ad9673 8ed665f 5ad9673 8ed665f 5ad9673 8ed665f 5ad9673 8ed665f 5ad9673 8ed665f 5ad9673 8ed665f 5ad9673 8ed665f 5ad9673 8ed665f 5ad9673 8ed665f bc50791 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 |
import gradio as gr
from phi.agent import Agent
from phi.model.groq import Groq
import logging
from pathlib import Path
from time import perf_counter
from sentence_transformers import CrossEncoder
import numpy as np
from os import getenv
import requests
from jinja2 import Environment, FileSystemLoader
from backend.semantic_search import table, retriever
# Bhashini API translation function
api_key = getenv('API_KEY', '').strip()
user_id = getenv('USER_ID', '').strip()
def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") -> dict:
"""Translates text from source language to target language using the Bhashini API."""
if not text.strip():
print('Input text is empty. Please provide valid text for translation.')
return {"status_code": 400, "message": "Input text is empty", "translated_content": None, "speech_content": None}
else:
print('Input text - ', text)
print(f'Starting translation process from {from_code} to {to_code}...')
gr.Warning(f'Translating to {to_code}...')
url = 'https://meity-auth.ulcacontrib.org/ulca/apis/v0/model/getModelsPipeline'
headers = {
"Content-Type": "application/json",
"userID": user_id,
"ulcaApiKey": api_key
}
for key, value in headers.items():
if not isinstance(value, str) or '\n' in value or '\r' in value:
print(f"Invalid header value for {key}: {value}")
return {"status_code": 400, "message": f"Invalid header value for {key}", "translated_content": None}
payload = {
"pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}}}],
"pipelineRequestConfig": {"pipelineId": "64392f96daac500b55c543cd"}
}
print('Sending initial request to get the pipeline...')
response = requests.post(url, json=payload, headers=headers)
if response.status_code != 200:
print(f'Error in initial request: {response.status_code}')
return {"status_code": response.status_code, "message": "Error in translation request", "translated_content": None}
print('Initial request successful, processing response...')
response_data = response.json()
service_id = response_data["pipelineResponseConfig"][0]["config"][0]["serviceId"]
callback_url = response_data["pipelineInferenceAPIEndPoint"]["callbackUrl"]
print(f'Service ID: {service_id}, Callback URL: {callback_url}')
headers2 = {
"Content-Type": "application/json",
response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["name"]: response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["value"]
}
compute_payload = {
"pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}, "serviceId": service_id}}],
"inputData": {"input": [{"source": text}], "audio": [{"audioContent": None}]}
}
print(f'Sending translation request with text: "{text}"')
compute_response = requests.post(callback_url, json=compute_payload, headers=headers2)
if compute_response.status_code != 200:
print(f'Error in translation request: {compute_response.status_code}')
return {"status_code": compute_response.status_code, "message": "Error in translation", "translated_content": None}
print('Translation request successful, processing translation...')
compute_response_data = compute_response.json()
translated_content = compute_response_data["pipelineResponse"][0]["output"][0]["target"]
print(f'Translation successful. Translated content: "{translated_content}"')
return {"status_code": 200, "message": "Translation successful", "translated_content": translated_content}
# Existing chatbot functions
VECTOR_COLUMN_NAME = "vector"
TEXT_COLUMN_NAME = "text"
HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN")
proj_dir = Path(__file__).parent
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Set up Jinja2 environment
env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))
template = env.get_template('template.j2')
template_html = env.get_template('template_html.j2')
# Initialize Grok Agent
api_key = getenv("GROQ_API_KEY")
if not api_key:
gr.Warning("GROQ_API_KEY not found. Set it in 'Repository secrets'.")
logger.error("GROQ_API_KEY not found.")
api_key = "" # Fallback, but will fail without a key
agent = Agent(
name="Customs Assistant",
role="You are a helpful assistant for CBIC officers, providing guidance on customs procedures and regulations.",
instructions=[
"You are an expert in customs regulations and CBIC procedures.",
"Provide clear, accurate, and professional explanations.",
"Use simple language and examples relevant to customs officers.",
"Focus on topics like transhipment, AEO schemes, bonds, penalties, and CFS approvals.",
"Structure responses with headings and bullet points when helpful.",
"If you don't know the answer, say 'I don't have enough information to answer that.'"
],
model=Groq(id="llama3-70b-8192", api_key=api_key),
markdown=True
)
def simple_chat_function(message, history, cross_encoder_choice):
"""Chat function with semantic search and Grok agent integration"""
if not message.strip():
return "", history, ""
top_rerank = 25
top_k_rank = 20
try:
start_time = perf_counter()
# Encode query and search documents
query_vec = retriever.encode(message)
documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list()
documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
# Re-rank documents using cross-encoder
if cross_encoder_choice == '(FAST) MiniLM-L6v2':
cross_encoder_model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
elif cross_encoder_choice == '(ACCURATE) BGE reranker':
cross_encoder_model = CrossEncoder('BAAI/bge-reranker-base')
elif cross_encoder_choice == '(HIGH ACCURATE) ColBERT':
gr.Warning('Retrieving using ColBERT.. First time query may take a minute for model to load..pls wait')
from ragatouille import RAGPretrainedModel
RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
RAG_db = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
documents = [item['content'] for item in RAG_db.search(message, k=top_k_rank)]
cross_encoder_model = None # No re-ranking needed for ColBERT
if cross_encoder_model:
query_doc_pair = [[message, doc] for doc in documents]
cross_scores = cross_encoder_model.predict(query_doc_pair)
sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
# Create context from top documents
context = "\n\n".join(documents[:10]) if documents else ""
context = f"Context information from customs materials:\n{context}\n\n"
# Add conversation history for context
history_context = ""
if history and len(history) > 0:
for user_msg, bot_msg in history[-2:]: # Last 2 exchanges
if user_msg and bot_msg:
history_context += f"Previous Q: {user_msg}\nPrevious A: {bot_msg}\n"
# Create full prompt
full_prompt = f"{history_context}{context}Question: {message}\n\nPlease answer the question using the context provided above. If the context doesn't contain relevant information, use your general knowledge about CBIC customs procedures."
# Generate response
response = agent.run(full_prompt)
response_text = response.content if hasattr(response, 'content') else str(response)
# Add to history
history.append([message, response_text])
# Render template with documents and query
prompt_html = template_html.render(documents=documents, query=message)
logger.info(f"Response generation took {perf_counter() - start_time:.2f} seconds")
return "", history, prompt_html
except Exception as e:
logger.error(f"Error in response generation: {e}")
return "", history, f"Error generating response: {str(e)}"
def translate_text(selected_language, history):
"""Translate the last response in history to the selected language."""
iso_language_codes = {
"Hindi": "hi", "Gom": "gom", "Kannada": "kn", "Dogri": "doi", "Bodo": "brx", "Urdu": "ur",
"Tamil": "ta", "Kashmiri": "ks", "Assamese": "as", "Bengali": "bn", "Marathi": "mr",
"Sindhi": "sd", "Maithili": "mai", "Punjabi": "pa", "Malayalam": "ml", "Manipuri": "mni",
"Telugu": "te", "Sanskrit": "sa", "Nepali": "ne", "Santali": "sat", "Gujarati": "gu", "Odia": "or"
}
to_code = iso_language_codes[selected_language]
response_text = history[-1][1] if history and history[-1][1] else ''
print('response_text for translation', response_text)
translation = bhashini_translate(response_text, to_code=to_code)
return translation.get('translated_content', 'Translation failed.')
# Gradio interface
with gr.Blocks(theme='gradio/soft') as CHATBOT:
with gr.Row():
with gr.Column(scale=10):
gr.HTML(value="""<div style="color: #FF4500;"><h1>ADWITIYA-</h1> <h1><span style="color: #008000">Custom Manual Chatbot </span></h1></div>""")
gr.HTML(value=f"""<p style="font-family: sans-serif; font-size: 16px;">Using GenAI for CBIC Capacity Building - A free chat bot developed by National Customs Targeting Center using Open source LLMs for CBIC Officers</p>""")
gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;">Developed by NCTC,Mumbai. Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""")
with gr.Column(scale=3):
gr.Image(value='logo.png', height=200, width=200)
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg',
'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'),
bubble_full_width=False,
show_copy_button=True,
show_share_button=True,
)
with gr.Row():
txt = gr.Textbox(
scale=3,
show_label=False,
placeholder="Enter text and press enter",
container=False,
)
txt_btn = gr.Button(value="Submit text", scale=1)
cross_encoder = gr.Radio(choices=['(FAST) MiniLM-L6v2', '(ACCURATE) BGE reranker', '(HIGH ACCURATE) ColBERT'], value='(ACCURATE) BGE reranker', label="Embeddings", info="Only First query to Colbert may take little time)")
language_dropdown = gr.Dropdown(
choices=[
"Hindi", "Gom", "Kannada", "Dogri", "Bodo", "Urdu", "Tamil", "Kashmiri", "Assamese", "Bengali", "Marathi",
"Sindhi", "Maithili", "Punjabi", "Malayalam", "Manipuri", "Telugu", "Sanskrit", "Nepali", "Santali",
"Gujarati", "Odia"
],
value="Hindi",
label="Select Language for Translation"
)
prompt_html = gr.HTML()
translated_textbox = gr.Textbox(label="Translated Response")
def update_chat_and_translate(txt, cross_encoder, history, language_dropdown):
# Fixed: history is now directly used instead of history_state.value
if not history:
history = []
# Call simple_chat_function
msg, updated_history, prompt_html_content = simple_chat_function(txt, history, cross_encoder)
# Translate text
translated_text = translate_text(language_dropdown, updated_history)
return updated_history, prompt_html_content, translated_text
# Fixed: Pass chatbot directly instead of history_state
txt_msg = txt_btn.click(update_chat_and_translate, [txt, cross_encoder, chatbot, language_dropdown], [chatbot, prompt_html, translated_textbox])
txt_msg = txt.submit(update_chat_and_translate, [txt, cross_encoder, chatbot, language_dropdown], [chatbot, prompt_html, translated_textbox])
examples = [
'My transhipment cargo is missing',
'Can you explain and tabulate the difference between B-17 bond and a warehousing bond?',
'What are the benefits of the AEO Scheme and eligibility criteria?',
'What are penalties for customs offences?',
'What are penalties for customs officers misusing their powers under the Customs Act?',
'What are eligibility criteria for exemption from cost recovery charges?',
'List in detail the procedure for obtaining new approval for opening a CFS attached to an ICD'
]
gr.Examples(examples, txt)
# Launch the Gradio application
CHATBOT.launch(share=True, debug=True)# import gradio as gr
# from phi.agent import Agent
# from phi.model.groq import Groq
# import logging
# from pathlib import Path
# from time import perf_counter
# from sentence_transformers import CrossEncoder
# import numpy as np
# from os import getenv
# import requests
# from jinja2 import Environment, FileSystemLoader
# from backend.semantic_search import table, retriever
# # Bhashini API translation function
# api_key = getenv('API_KEY', '').strip()
# user_id = getenv('USER_ID', '').strip()
# def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") -> dict:
# """Translates text from source language to target language using the Bhashini API."""
# if not text.strip():
# print('Input text is empty. Please provide valid text for translation.')
# return {"status_code": 400, "message": "Input text is empty", "translated_content": None, "speech_content": None}
# else:
# print('Input text - ', text)
# print(f'Starting translation process from {from_code} to {to_code}...')
# gr.Warning(f'Translating to {to_code}...')
# url = 'https://meity-auth.ulcacontrib.org/ulca/apis/v0/model/getModelsPipeline'
# headers = {
# "Content-Type": "application/json",
# "userID": user_id,
# "ulcaApiKey": api_key
# }
# for key, value in headers.items():
# if not isinstance(value, str) or '\n' in value or '\r' in value:
# print(f"Invalid header value for {key}: {value}")
# return {"status_code": 400, "message": f"Invalid header value for {key}", "translated_content": None}
# payload = {
# "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}}}],
# "pipelineRequestConfig": {"pipelineId": "64392f96daac500b55c543cd"}
# }
# print('Sending initial request to get the pipeline...')
# response = requests.post(url, json=payload, headers=headers)
# if response.status_code != 200:
# print(f'Error in initial request: {response.status_code}')
# return {"status_code": response.status_code, "message": "Error in translation request", "translated_content": None}
# print('Initial request successful, processing response...')
# response_data = response.json()
# service_id = response_data["pipelineResponseConfig"][0]["config"][0]["serviceId"]
# callback_url = response_data["pipelineInferenceAPIEndPoint"]["callbackUrl"]
# print(f'Service ID: {service_id}, Callback URL: {callback_url}')
# headers2 = {
# "Content-Type": "application/json",
# response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["name"]: response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["value"]
# }
# compute_payload = {
# "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}, "serviceId": service_id}}],
# "inputData": {"input": [{"source": text}], "audio": [{"audioContent": None}]}
# }
# print(f'Sending translation request with text: "{text}"')
# compute_response = requests.post(callback_url, json=compute_payload, headers=headers2)
# if compute_response.status_code != 200:
# print(f'Error in translation request: {compute_response.status_code}')
# return {"status_code": compute_response.status_code, "message": "Error in translation", "translated_content": None}
# print('Translation request successful, processing translation...')
# compute_response_data = compute_response.json()
# translated_content = compute_response_data["pipelineResponse"][0]["output"][0]["target"]
# print(f'Translation successful. Translated content: "{translated_content}"')
# return {"status_code": 200, "message": "Translation successful", "translated_content": translated_content}
# # Existing chatbot functions
# VECTOR_COLUMN_NAME = "vector"
# TEXT_COLUMN_NAME = "text"
# HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN")
# proj_dir = Path(__file__).parent
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# # Set up Jinja2 environment
# env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))
# template = env.get_template('template.j2')
# template_html = env.get_template('template_html.j2')
# # Initialize Grok Agent
# api_key = getenv("GROQ_API_KEY")
# if not api_key:
# gr.Warning("GROQ_API_KEY not found. Set it in 'Repository secrets'.")
# logger.error("GROQ_API_KEY not found.")
# api_key = "" # Fallback, but will fail without a key
# agent = Agent(
# name="Customs Assistant",
# role="You are a helpful assistant for CBIC officers, providing guidance on customs procedures and regulations.",
# instructions=[
# "You are an expert in customs regulations and CBIC procedures.",
# "Provide clear, accurate, and professional explanations.",
# "Use simple language and examples relevant to customs officers.",
# "Focus on topics like transhipment, AEO schemes, bonds, penalties, and CFS approvals.",
# "Structure responses with headings and bullet points when helpful.",
# "If you don’t know the answer, say 'I don’t have enough information to answer that.'"
# ],
# model=Groq(id="llama3-70b-8192", api_key=api_key),
# markdown=True
# )
# def simple_chat_function(message, history, cross_encoder_choice):
# """Chat function with semantic search and Grok agent integration"""
# if not message.strip():
# return "", history, ""
# top_rerank = 25
# top_k_rank = 20
# try:
# start_time = perf_counter()
# # Encode query and search documents
# query_vec = retriever.encode(message)
# documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list()
# documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
# # Re-rank documents using cross-encoder
# if cross_encoder_choice == '(FAST) MiniLM-L6v2':
# cross_encoder_model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
# elif cross_encoder_choice == '(ACCURATE) BGE reranker':
# cross_encoder_model = CrossEncoder('BAAI/bge-reranker-base')
# elif cross_encoder_choice == '(HIGH ACCURATE) ColBERT':
# gr.Warning('Retrieving using ColBERT.. First time query may take a minute for model to load..pls wait')
# from ragatouille import RAGPretrainedModel
# RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
# RAG_db = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
# documents = [item['content'] for item in RAG_db.search(message, k=top_k_rank)]
# cross_encoder_model = None # No re-ranking needed for ColBERT
# if cross_encoder_model:
# query_doc_pair = [[message, doc] for doc in documents]
# cross_scores = cross_encoder_model.predict(query_doc_pair)
# sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
# documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
# # Create context from top documents
# context = "\n\n".join(documents[:10]) if documents else ""
# context = f"Context information from customs materials:\n{context}\n\n"
# # Add conversation history for context
# history_context = ""
# if history and len(history) > 0:
# for user_msg, bot_msg in history[-2:]: # Last 2 exchanges
# if user_msg and bot_msg:
# history_context += f"Previous Q: {user_msg}\nPrevious A: {bot_msg}\n"
# # Create full prompt
# full_prompt = f"{history_context}{context}Question: {message}\n\nPlease answer the question using the context provided above. If the context doesn't contain relevant information, use your general knowledge about CBIC customs procedures."
# # Generate response
# response = agent.run(full_prompt)
# response_text = response.content if hasattr(response, 'content') else str(response)
# # Add to history
# history.append([message, response_text])
# # Render template with documents and query
# prompt_html = template_html.render(documents=documents, query=message)
# logger.info(f"Response generation took {perf_counter() - start_time:.2f} seconds")
# return "", history, prompt_html
# except Exception as e:
# logger.error(f"Error in response generation: {e}")
# return "", history, f"Error generating response: {str(e)}"
# def translate_text(selected_language, history):
# """Translate the last response in history to the selected language."""
# iso_language_codes = {
# "Hindi": "hi", "Gom": "gom", "Kannada": "kn", "Dogri": "doi", "Bodo": "brx", "Urdu": "ur",
# "Tamil": "ta", "Kashmiri": "ks", "Assamese": "as", "Bengali": "bn", "Marathi": "mr",
# "Sindhi": "sd", "Maithili": "mai", "Punjabi": "pa", "Malayalam": "ml", "Manipuri": "mni",
# "Telugu": "te", "Sanskrit": "sa", "Nepali": "ne", "Santali": "sat", "Gujarati": "gu", "Odia": "or"
# }
# to_code = iso_language_codes[selected_language]
# response_text = history[-1][1] if history and history[-1][1] else ''
# print('response_text for translation', response_text)
# translation = bhashini_translate(response_text, to_code=to_code)
# return translation.get('translated_content', 'Translation failed.')
# # Gradio interface
# with gr.Blocks(theme='gradio/soft') as CHATBOT:
# history_state = gr.State([])
# with gr.Row():
# with gr.Column(scale=10):
# gr.HTML(value="""<div style="color: #FF4500;"><h1>ADWITIYA-</h1> <h1><span style="color: #008000">Custom Manual Chatbot </span></h1></div>""")
# gr.HTML(value=f"""<p style="font-family: sans-serif; font-size: 16px;">Using GenAI for CBIC Capacity Building - A free chat bot developed by National Customs Targeting Center using Open source LLMs for CBIC Officers</p>""")
# gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;">Developed by NCTC,Mumbai. Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""")
# with gr.Column(scale=3):
# gr.Image(value='logo.png', height=200, width=200)
# chatbot = gr.Chatbot(
# [],
# elem_id="chatbot",
# avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg',
# 'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'),
# bubble_full_width=False,
# show_copy_button=True,
# show_share_button=True,
# )
# with gr.Row():
# txt = gr.Textbox(
# scale=3,
# show_label=False,
# placeholder="Enter text and press enter",
# container=False,
# )
# txt_btn = gr.Button(value="Submit text", scale=1)
# cross_encoder = gr.Radio(choices=['(FAST) MiniLM-L6v2', '(ACCURATE) BGE reranker', '(HIGH ACCURATE) ColBERT'], value='(ACCURATE) BGE reranker', label="Embeddings", info="Only First query to Colbert may take little time)")
# language_dropdown = gr.Dropdown(
# choices=[
# "Hindi", "Gom", "Kannada", "Dogri", "Bodo", "Urdu", "Tamil", "Kashmiri", "Assamese", "Bengali", "Marathi",
# "Sindhi", "Maithili", "Punjabi", "Malayalam", "Manipuri", "Telugu", "Sanskrit", "Nepali", "Santali",
# "Gujarati", "Odia"
# ],
# value="Hindi",
# label="Select Language for Translation"
# )
# prompt_html = gr.HTML()
# translated_textbox = gr.Textbox(label="Translated Response")
# def update_chat_and_translate(txt, cross_encoder, history_state, language_dropdown):
# history = history_state.value if history_state.value else []
# history.append((txt, ""))
# # Call simple_chat_function
# msg, history, prompt_html_content = simple_chat_function(txt, history, cross_encoder)
# # Translate text
# translated_text = translate_text(language_dropdown, history)
# return history, prompt_html_content, translated_text
# txt_msg = txt_btn.click(update_chat_and_translate, [txt, cross_encoder, history_state, language_dropdown], [chatbot, prompt_html, translated_textbox])
# txt_msg = txt.submit(update_chat_and_translate, [txt, cross_encoder, history_state, language_dropdown], [chatbot, prompt_html, translated_textbox])
# examples = [
# 'My transhipment cargo is missing',
# 'Can you explain and tabulate the difference between B-17 bond and a warehousing bond?',
# 'What are the benefits of the AEO Scheme and eligibility criteria?',
# 'What are penalties for customs offences?',
# 'What are penalties for customs officers misusing their powers under the Customs Act?',
# 'What are eligibility criteria for exemption from cost recovery charges?',
# 'List in detail the procedure for obtaining new approval for opening a CFS attached to an ICD'
# ]
# gr.Examples(examples, txt)
# # Launch the Gradio application
# CHATBOT.launch(share=True, debug=True)# import requests
# # import gradio as gr
# # from ragatouille import RAGPretrainedModel
# # import logging
# # from pathlib import Path
# # from time import perf_counter
# # from sentence_transformers import CrossEncoder
# # from huggingface_hub import InferenceClient
# # from jinja2 import Environment, FileSystemLoader
# # import numpy as np
# # from os import getenv
# # from backend.query_llm import generate_hf, generate_qwen
# # from backend.semantic_search import table, retriever
# # from huggingface_hub import InferenceClient
# # # Bhashini API translation function
# # api_key = getenv('API_KEY')
# # user_id = getenv('USER_ID')
# # def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") -> dict:
# # """Translates text from source language to target language using the Bhashini API."""
# # if not text.strip():
# # print('Input text is empty. Please provide valid text for translation.')
# # return {"status_code": 400, "message": "Input text is empty", "translated_content": None, "speech_content": None}
# # else:
# # print('Input text - ',text)
# # print(f'Starting translation process from {from_code} to {to_code}...')
# # print(f'Starting translation process from {from_code} to {to_code}...')
# # gr.Warning(f'Translating to {to_code}...')
# # url = 'https://meity-auth.ulcacontrib.org/ulca/apis/v0/model/getModelsPipeline'
# # headers = {
# # "Content-Type": "application/json",
# # "userID": user_id,
# # "ulcaApiKey": api_key
# # }
# # payload = {
# # "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}}}],
# # "pipelineRequestConfig": {"pipelineId": "64392f96daac500b55c543cd"}
# # }
# # print('Sending initial request to get the pipeline...')
# # response = requests.post(url, json=payload, headers=headers)
# # if response.status_code != 200:
# # print(f'Error in initial request: {response.status_code}')
# # return {"status_code": response.status_code, "message": "Error in translation request", "translated_content": None}
# # print('Initial request successful, processing response...')
# # response_data = response.json()
# # service_id = response_data["pipelineResponseConfig"][0]["config"][0]["serviceId"]
# # callback_url = response_data["pipelineInferenceAPIEndPoint"]["callbackUrl"]
# # print(f'Service ID: {service_id}, Callback URL: {callback_url}')
# # headers2 = {
# # "Content-Type": "application/json",
# # response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["name"]: response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["value"]
# # }
# # compute_payload = {
# # "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}, "serviceId": service_id}}],
# # "inputData": {"input": [{"source": text}], "audio": [{"audioContent": None}]}
# # }
# # print(f'Sending translation request with text: "{text}"')
# # compute_response = requests.post(callback_url, json=compute_payload, headers=headers2)
# # if compute_response.status_code != 200:
# # print(f'Error in translation request: {compute_response.status_code}')
# # return {"status_code": compute_response.status_code, "message": "Error in translation", "translated_content": None}
# # print('Translation request successful, processing translation...')
# # compute_response_data = compute_response.json()
# # translated_content = compute_response_data["pipelineResponse"][0]["output"][0]["target"]
# # print(f'Translation successful. Translated content: "{translated_content}"')
# # return {"status_code": 200, "message": "Translation successful", "translated_content": translated_content}
# # # Existing chatbot functions
# # VECTOR_COLUMN_NAME = "vector"
# # TEXT_COLUMN_NAME = "text"
# # HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN")
# # proj_dir = Path(__file__).parent
# # logging.basicConfig(level=logging.INFO)
# # logger = logging.getLogger(__name__)
# # client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1", token=HF_TOKEN)
# # proj_dir = Path(__file__).parent
# # env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))
# # template = env.get_template('template.j2')
# # template_html = env.get_template('template_html.j2')
# # # def add_text(history, text):
# # # history = [] if history is None else history
# # # history = history + [(text, None)]
# # # return history, gr.Textbox(value="", interactive=False)
# # def bot(history, cross_encoder):
# # top_rerank = 25
# # top_k_rank = 20
# # query = history[-1][0] if history else ''
# # print('\nQuery: ',query )
# # print('\nHistory:',history)
# # if not query:
# # gr.Warning("Please submit a non-empty string as a prompt")
# # raise ValueError("Empty string was submitted")
# # logger.warning('Retrieving documents...')
# # if cross_encoder == '(HIGH ACCURATE) ColBERT':
# # gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait')
# # RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
# # RAG_db = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
# # documents_full = RAG_db.search(query, k=top_k_rank)
# # documents = [item['content'] for item in documents_full]
# # prompt = template.render(documents=documents, query=query)
# # prompt_html = template_html.render(documents=documents, query=query)
# # generate_fn = generate_hf
# # history[-1][1] = ""
# # for character in generate_fn(prompt, history[:-1]):
# # history[-1][1] = character
# # yield history, prompt_html
# # else:
# # document_start = perf_counter()
# # query_vec = retriever.encode(query)
# # doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank)
# # documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list()
# # documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
# # query_doc_pair = [[query, doc] for doc in documents]
# # if cross_encoder == '(FAST) MiniLM-L6v2':
# # cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
# # elif cross_encoder == '(ACCURATE) BGE reranker':
# # cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
# # cross_scores = cross_encoder1.predict(query_doc_pair)
# # sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
# # documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
# # document_time = perf_counter() - document_start
# # prompt = template.render(documents=documents, query=query)
# # prompt_html = template_html.render(documents=documents, query=query)
# # #generate_fn = generate_hf
# # generate_fn=generate_qwen
# # # Create a new history entry instead of modifying the tuple directly
# # new_history = history[:-1] + [ (prompt, "") ] # query replaced prompt
# # output=''
# # # for character in generate_fn(prompt, history[:-1]):
# # # #new_history[-1] = (query, character)
# # # output+=character
# # output=generate_fn(prompt, history[:-1])
# # print('Output:',output)
# # new_history[-1] = (prompt, output) #query replaced with prompt
# # print('New History',new_history)
# # #print('prompt html',prompt_html)# Update the last tuple with new text
# # history_list = list(history[-1])
# # history_list[1] = output # Assuming `character` is what you want to assign
# # # Update the history with the modified list converted back to a tuple
# # history[-1] = tuple(history_list)
# # #history[-1][1] = character
# # # yield new_history, prompt_html
# # yield history, prompt_html
# # # new_history,prompt_html
# # # history[-1][1] = ""
# # # for character in generate_fn(prompt, history[:-1]):
# # # history[-1][1] = character
# # # yield history, prompt_html
# # #def translate_text(response_text, selected_language):
# # def translate_text(selected_language,history):
# # iso_language_codes = {
# # "Hindi": "hi",
# # "Gom": "gom",
# # "Kannada": "kn",
# # "Dogri": "doi",
# # "Bodo": "brx",
# # "Urdu": "ur",
# # "Tamil": "ta",
# # "Kashmiri": "ks",
# # "Assamese": "as",
# # "Bengali": "bn",
# # "Marathi": "mr",
# # "Sindhi": "sd",
# # "Maithili": "mai",
# # "Punjabi": "pa",
# # "Malayalam": "ml",
# # "Manipuri": "mni",
# # "Telugu": "te",
# # "Sanskrit": "sa",
# # "Nepali": "ne",
# # "Santali": "sat",
# # "Gujarati": "gu",
# # "Odia": "or"
# # }
# # to_code = iso_language_codes[selected_language]
# # response_text = history[-1][1] if history else ''
# # print('response_text for translation',response_text)
# # translation = bhashini_translate(response_text, to_code=to_code)
# # return translation['translated_content']
# # # Gradio interface
# # with gr.Blocks(theme='gradio/soft') as CHATBOT:
# # history_state = gr.State([])
# # with gr.Row():
# # with gr.Column(scale=10):
# # gr.HTML(value="""<div style="color: #FF4500;"><h1>ADWITIYA-</h1> <h1><span style="color: #008000">Custom Manual Chatbot </span></h1></div>""")
# # gr.HTML(value=f"""<p style="font-family: sans-serif; font-size: 16px;">Using GenAI for CBIC Capacity Building - A free chat bot developed by National Customs Targeting Center using Open source LLMs for CBIC Officers</p>""")
# # gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;">Developed by NCTC,Mumbai. Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""")
# # with gr.Column(scale=3):
# # gr.Image(value='logo.png', height=200, width=200)
# # chatbot = gr.Chatbot(
# # [],
# # elem_id="chatbot",
# # avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg',
# # 'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'),
# # bubble_full_width=False,
# # show_copy_button=True,
# # show_share_button=True,
# # )
# # with gr.Row():
# # txt = gr.Textbox(
# # scale=3,
# # show_label=False,
# # placeholder="Enter text and press enter",
# # container=False,
# # )
# # txt_btn = gr.Button(value="Submit text", scale=1)
# # cross_encoder = gr.Radio(choices=['(FAST) MiniLM-L6v2', '(ACCURATE) BGE reranker', '(HIGH ACCURATE) ColBERT'], value='(ACCURATE) BGE reranker', label="Embeddings", info="Only First query to Colbert may take little time)")
# # language_dropdown = gr.Dropdown(
# # choices=[
# # "Hindi", "Gom", "Kannada", "Dogri", "Bodo", "Urdu", "Tamil", "Kashmiri", "Assamese", "Bengali", "Marathi",
# # "Sindhi", "Maithili", "Punjabi", "Malayalam", "Manipuri", "Telugu", "Sanskrit", "Nepali", "Santali",
# # "Gujarati", "Odia"
# # ],
# # value="Hindi", # default to Hindi
# # label="Select Language for Translation"
# # )
# # prompt_html = gr.HTML()
# # translated_textbox = gr.Textbox(label="Translated Response")
# # def update_history_and_translate(txt, cross_encoder, history_state, language_dropdown):
# # print('History state',history_state)
# # history = history_state
# # history.append((txt, ""))
# # #history_state.value=(history)
# # # Call bot function
# # # bot_output = list(bot(history, cross_encoder))
# # bot_output = next(bot(history, cross_encoder))
# # print('bot_output',bot_output)
# # #history, prompt_html = bot_output[-1]
# # history, prompt_html = bot_output
# # print('History',history)
# # # Update the history state
# # history_state[:] = history
# # # Translate text
# # translated_text = translate_text(language_dropdown, history)
# # return history, prompt_html, translated_text
# # txt_msg = txt_btn.click(update_history_and_translate, [txt, cross_encoder, history_state, language_dropdown], [chatbot, prompt_html, translated_textbox])
# # txt_msg = txt.submit(update_history_and_translate, [txt, cross_encoder, history_state, language_dropdown], [chatbot, prompt_html, translated_textbox])
# # examples = ['My transhipment cargo is missing','can u explain and tabulate difference between b 17 bond and a warehousing bond',
# # 'What are benefits of the AEO Scheme and eligibility criteria?',
# # 'What are penalties for customs offences? ', 'what are penalties to customs officers misusing their powers under customs act?','What are eligibility criteria for exemption from cost recovery charges','list in detail what is procedure for obtaining new approval for openeing a CFS attached to an ICD']
# # gr.Examples(examples, txt)
# # # Launch the Gradio application
# # CHATBOT.launch(share=True,debug=True)
|