File size: 40,782 Bytes
bc50791
5ad9673
 
91fad79
 
 
 
bc50791
91fad79
5ad9673
 
895f730
8ed665f
bc50791
5ad9673
 
8f92a24
97badab
bc50791
7a4c273
 
 
 
5ad9673
97badab
 
 
bc50791
 
 
 
 
 
5ad9673
 
 
 
 
bc50791
 
 
 
97badab
 
bc50791
 
 
97badab
bc50791
 
97badab
bc50791
 
 
97badab
 
 
bc50791
 
 
 
 
 
 
 
 
97badab
bc50791
97badab
bc50791
97badab
bc50791
 
97badab
bc50791
 
 
97badab
bc50791
91fad79
bc50791
91fad79
 
 
 
bc50791
91fad79
 
 
5ad9673
 
91fad79
 
 
5ad9673
 
 
 
 
 
91fad79
5ad9673
 
 
 
 
 
 
 
 
8ed665f
5ad9673
 
 
 
073ef13
5ad9673
 
 
 
 
91fad79
 
 
5ad9673
 
 
 
 
91fad79
 
 
5ad9673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91fad79
5ad9673
 
 
fe35252
5ad9673
 
 
 
 
 
79729be
5ad9673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
073ef13
5ad9673
 
 
 
 
 
bc50791
5ad9673
 
 
 
bc50791
1fad4eb
bc50791
5ad9673
 
bc50791
5ad9673
1fad4eb
bc50791
57d1675
91fad79
 
bef07a7
bc50791
72508d4
91fad79
 
bc50791
 
91fad79
bc50791
 
 
 
 
 
 
 
91fad79
 
 
bc50791
 
 
 
 
91fad79
bc50791
 
 
 
 
 
 
 
5ad9673
bc50791
 
 
91fad79
58c3d9a
5ad9673
8ed665f
 
 
 
073ef13
5ad9673
8ed665f
073ef13
 
8ed665f
5ad9673
8ed665f
073ef13
8ed665f
 
 
58c3d9a
5ad9673
 
 
 
 
 
 
 
 
628d310
 
0aeac8d
bc50791
8ed665f
 
 
5ad9673
 
 
 
 
 
8ed665f
 
5ad9673
 
8ed665f
 
5ad9673
 
 
 
 
 
 
8ed665f
5ad9673
 
 
 
 
 
 
 
 
8ed665f
 
 
 
 
5ad9673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ed665f
 
5ad9673
 
 
8ed665f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ad9673
 
 
8ed665f
 
 
 
 
5ad9673
 
 
8ed665f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ad9673
8ed665f
 
 
5ad9673
8ed665f
 
 
 
 
 
5ad9673
8ed665f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ad9673
8ed665f
 
 
 
 
 
5ad9673
8ed665f
 
 
 
5ad9673
 
 
8ed665f
 
5ad9673
8ed665f
5ad9673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ed665f
5ad9673
 
 
 
 
8ed665f
 
 
5ad9673
 
8ed665f
 
5ad9673
 
 
8ed665f
 
5ad9673
8ed665f
 
5ad9673
8ed665f
 
 
 
 
 
 
 
 
5ad9673
 
 
 
8ed665f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc50791
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
import gradio as gr
from phi.agent import Agent
from phi.model.groq import Groq
import logging
from pathlib import Path
from time import perf_counter
from sentence_transformers import CrossEncoder
import numpy as np
from os import getenv
import requests
from jinja2 import Environment, FileSystemLoader
from backend.semantic_search import table, retriever

# Bhashini API translation function
api_key = getenv('API_KEY', '').strip()
user_id = getenv('USER_ID', '').strip()

def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") -> dict:
    """Translates text from source language to target language using the Bhashini API."""
    if not text.strip():
        print('Input text is empty. Please provide valid text for translation.')
        return {"status_code": 400, "message": "Input text is empty", "translated_content": None, "speech_content": None}
    else:
        print('Input text - ', text)
    print(f'Starting translation process from {from_code} to {to_code}...')
    gr.Warning(f'Translating to {to_code}...')
    
    url = 'https://meity-auth.ulcacontrib.org/ulca/apis/v0/model/getModelsPipeline'
    headers = {
        "Content-Type": "application/json",
        "userID": user_id,
        "ulcaApiKey": api_key
    }
    for key, value in headers.items():
        if not isinstance(value, str) or '\n' in value or '\r' in value:
            print(f"Invalid header value for {key}: {value}")
            return {"status_code": 400, "message": f"Invalid header value for {key}", "translated_content": None}

    payload = {
        "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}}}],
        "pipelineRequestConfig": {"pipelineId": "64392f96daac500b55c543cd"}
    }
    
    print('Sending initial request to get the pipeline...')
    response = requests.post(url, json=payload, headers=headers)
    
    if response.status_code != 200:
        print(f'Error in initial request: {response.status_code}')
        return {"status_code": response.status_code, "message": "Error in translation request", "translated_content": None}

    print('Initial request successful, processing response...')
    response_data = response.json()
    service_id = response_data["pipelineResponseConfig"][0]["config"][0]["serviceId"]
    callback_url = response_data["pipelineInferenceAPIEndPoint"]["callbackUrl"]
    
    print(f'Service ID: {service_id}, Callback URL: {callback_url}')
    
    headers2 = {
        "Content-Type": "application/json",
        response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["name"]: response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["value"]
    }
    compute_payload = {
        "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}, "serviceId": service_id}}],
        "inputData": {"input": [{"source": text}], "audio": [{"audioContent": None}]}
    }
    
    print(f'Sending translation request with text: "{text}"')
    compute_response = requests.post(callback_url, json=compute_payload, headers=headers2)
    
    if compute_response.status_code != 200:
        print(f'Error in translation request: {compute_response.status_code}')
        return {"status_code": compute_response.status_code, "message": "Error in translation", "translated_content": None}
    
    print('Translation request successful, processing translation...')
    compute_response_data = compute_response.json()
    translated_content = compute_response_data["pipelineResponse"][0]["output"][0]["target"]
    
    print(f'Translation successful. Translated content: "{translated_content}"')
    return {"status_code": 200, "message": "Translation successful", "translated_content": translated_content}

# Existing chatbot functions
VECTOR_COLUMN_NAME = "vector"
TEXT_COLUMN_NAME = "text"
HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN")
proj_dir = Path(__file__).parent

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Set up Jinja2 environment
env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))
template = env.get_template('template.j2')
template_html = env.get_template('template_html.j2')

# Initialize Grok Agent
api_key = getenv("GROQ_API_KEY")
if not api_key:
    gr.Warning("GROQ_API_KEY not found. Set it in 'Repository secrets'.")
    logger.error("GROQ_API_KEY not found.")
    api_key = ""  # Fallback, but will fail without a key

agent = Agent(
    name="Customs Assistant",
    role="You are a helpful assistant for CBIC officers, providing guidance on customs procedures and regulations.",
    instructions=[
        "You are an expert in customs regulations and CBIC procedures.",
        "Provide clear, accurate, and professional explanations.",
        "Use simple language and examples relevant to customs officers.",
        "Focus on topics like transhipment, AEO schemes, bonds, penalties, and CFS approvals.",
        "Structure responses with headings and bullet points when helpful.",
        "If you don't know the answer, say 'I don't have enough information to answer that.'"
    ],
    model=Groq(id="llama3-70b-8192", api_key=api_key),
    markdown=True
)

def simple_chat_function(message, history, cross_encoder_choice):
    """Chat function with semantic search and Grok agent integration"""
    if not message.strip():
        return "", history, ""
    
    top_rerank = 25
    top_k_rank = 20
    
    try:
        start_time = perf_counter()
        
        # Encode query and search documents
        query_vec = retriever.encode(message)
        documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list()
        documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
        
        # Re-rank documents using cross-encoder
        if cross_encoder_choice == '(FAST) MiniLM-L6v2':
            cross_encoder_model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
        elif cross_encoder_choice == '(ACCURATE) BGE reranker':
            cross_encoder_model = CrossEncoder('BAAI/bge-reranker-base')
        elif cross_encoder_choice == '(HIGH ACCURATE) ColBERT':
            gr.Warning('Retrieving using ColBERT.. First time query may take a minute for model to load..pls wait')
            from ragatouille import RAGPretrainedModel
            RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
            RAG_db = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
            documents = [item['content'] for item in RAG_db.search(message, k=top_k_rank)]
            cross_encoder_model = None  # No re-ranking needed for ColBERT

        if cross_encoder_model:
            query_doc_pair = [[message, doc] for doc in documents]
            cross_scores = cross_encoder_model.predict(query_doc_pair)
            sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
            documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
        
        # Create context from top documents
        context = "\n\n".join(documents[:10]) if documents else ""
        context = f"Context information from customs materials:\n{context}\n\n"
        
        # Add conversation history for context
        history_context = ""
        if history and len(history) > 0:
            for user_msg, bot_msg in history[-2:]:  # Last 2 exchanges
                if user_msg and bot_msg:
                    history_context += f"Previous Q: {user_msg}\nPrevious A: {bot_msg}\n"
        
        # Create full prompt
        full_prompt = f"{history_context}{context}Question: {message}\n\nPlease answer the question using the context provided above. If the context doesn't contain relevant information, use your general knowledge about CBIC customs procedures."
        
        # Generate response
        response = agent.run(full_prompt)
        response_text = response.content if hasattr(response, 'content') else str(response)
        
        # Add to history
        history.append([message, response_text])
        
        # Render template with documents and query
        prompt_html = template_html.render(documents=documents, query=message)
        
        logger.info(f"Response generation took {perf_counter() - start_time:.2f} seconds")
        return "", history, prompt_html
    
    except Exception as e:
        logger.error(f"Error in response generation: {e}")
        return "", history, f"Error generating response: {str(e)}"

def translate_text(selected_language, history):
    """Translate the last response in history to the selected language."""
    iso_language_codes = {
        "Hindi": "hi", "Gom": "gom", "Kannada": "kn", "Dogri": "doi", "Bodo": "brx", "Urdu": "ur",
        "Tamil": "ta", "Kashmiri": "ks", "Assamese": "as", "Bengali": "bn", "Marathi": "mr",
        "Sindhi": "sd", "Maithili": "mai", "Punjabi": "pa", "Malayalam": "ml", "Manipuri": "mni",
        "Telugu": "te", "Sanskrit": "sa", "Nepali": "ne", "Santali": "sat", "Gujarati": "gu", "Odia": "or"
    }
    
    to_code = iso_language_codes[selected_language]
    response_text = history[-1][1] if history and history[-1][1] else ''
    print('response_text for translation', response_text)
    translation = bhashini_translate(response_text, to_code=to_code)
    return translation.get('translated_content', 'Translation failed.')

# Gradio interface
with gr.Blocks(theme='gradio/soft') as CHATBOT:
    with gr.Row():
        with gr.Column(scale=10):
            gr.HTML(value="""<div style="color: #FF4500;"><h1>ADWITIYA-</h1> <h1><span style="color: #008000">Custom Manual Chatbot </span></h1></div>""")
            gr.HTML(value=f"""<p style="font-family: sans-serif; font-size: 16px;">Using GenAI for CBIC Capacity Building - A free chat bot developed by National Customs Targeting Center using Open source LLMs for CBIC Officers</p>""")
            gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;">Developed by NCTC,Mumbai. Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""")

        with gr.Column(scale=3):
            gr.Image(value='logo.png', height=200, width=200)

    chatbot = gr.Chatbot(
        [],
        elem_id="chatbot",
        avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg',
                       'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'),
        bubble_full_width=False,
        show_copy_button=True,
        show_share_button=True,
    )

    with gr.Row():
        txt = gr.Textbox(
            scale=3,
            show_label=False,
            placeholder="Enter text and press enter",
            container=False,
        )
        txt_btn = gr.Button(value="Submit text", scale=1)
    
    cross_encoder = gr.Radio(choices=['(FAST) MiniLM-L6v2', '(ACCURATE) BGE reranker', '(HIGH ACCURATE) ColBERT'], value='(ACCURATE) BGE reranker', label="Embeddings", info="Only First query to Colbert may take little time)")
    language_dropdown = gr.Dropdown(
        choices=[
            "Hindi", "Gom", "Kannada", "Dogri", "Bodo", "Urdu", "Tamil", "Kashmiri", "Assamese", "Bengali", "Marathi",
            "Sindhi", "Maithili", "Punjabi", "Malayalam", "Manipuri", "Telugu", "Sanskrit", "Nepali", "Santali",
            "Gujarati", "Odia"
        ],
        value="Hindi",
        label="Select Language for Translation"
    )
    
    prompt_html = gr.HTML()
    translated_textbox = gr.Textbox(label="Translated Response")

    def update_chat_and_translate(txt, cross_encoder, history, language_dropdown):
        # Fixed: history is now directly used instead of history_state.value
        if not history:
            history = []
        
        # Call simple_chat_function
        msg, updated_history, prompt_html_content = simple_chat_function(txt, history, cross_encoder)
        
        # Translate text
        translated_text = translate_text(language_dropdown, updated_history)
        
        return updated_history, prompt_html_content, translated_text

    # Fixed: Pass chatbot directly instead of history_state
    txt_msg = txt_btn.click(update_chat_and_translate, [txt, cross_encoder, chatbot, language_dropdown], [chatbot, prompt_html, translated_textbox])
    txt_msg = txt.submit(update_chat_and_translate, [txt, cross_encoder, chatbot, language_dropdown], [chatbot, prompt_html, translated_textbox])

    examples = [
        'My transhipment cargo is missing',
        'Can you explain and tabulate the difference between B-17 bond and a warehousing bond?',
        'What are the benefits of the AEO Scheme and eligibility criteria?',
        'What are penalties for customs offences?',
        'What are penalties for customs officers misusing their powers under the Customs Act?',
        'What are eligibility criteria for exemption from cost recovery charges?',
        'List in detail the procedure for obtaining new approval for opening a CFS attached to an ICD'
    ]

    gr.Examples(examples, txt)

# Launch the Gradio application
CHATBOT.launch(share=True, debug=True)# import gradio as gr
# from phi.agent import Agent
# from phi.model.groq import Groq
# import logging
# from pathlib import Path
# from time import perf_counter
# from sentence_transformers import CrossEncoder
# import numpy as np
# from os import getenv
# import requests
# from jinja2 import Environment, FileSystemLoader
# from backend.semantic_search import table, retriever
# # Bhashini API translation function
# api_key = getenv('API_KEY', '').strip()
# user_id = getenv('USER_ID', '').strip()

# def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") -> dict:
#     """Translates text from source language to target language using the Bhashini API."""
#     if not text.strip():
#         print('Input text is empty. Please provide valid text for translation.')
#         return {"status_code": 400, "message": "Input text is empty", "translated_content": None, "speech_content": None}
#     else:
#         print('Input text - ', text)
#     print(f'Starting translation process from {from_code} to {to_code}...')
#     gr.Warning(f'Translating to {to_code}...')
    
#     url = 'https://meity-auth.ulcacontrib.org/ulca/apis/v0/model/getModelsPipeline'
#     headers = {
#         "Content-Type": "application/json",
#         "userID": user_id,
#         "ulcaApiKey": api_key
#     }
#     for key, value in headers.items():
#         if not isinstance(value, str) or '\n' in value or '\r' in value:
#             print(f"Invalid header value for {key}: {value}")
#             return {"status_code": 400, "message": f"Invalid header value for {key}", "translated_content": None}

#     payload = {
#         "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}}}],
#         "pipelineRequestConfig": {"pipelineId": "64392f96daac500b55c543cd"}
#     }
    
#     print('Sending initial request to get the pipeline...')
#     response = requests.post(url, json=payload, headers=headers)
    
#     if response.status_code != 200:
#         print(f'Error in initial request: {response.status_code}')
#         return {"status_code": response.status_code, "message": "Error in translation request", "translated_content": None}

#     print('Initial request successful, processing response...')
#     response_data = response.json()
#     service_id = response_data["pipelineResponseConfig"][0]["config"][0]["serviceId"]
#     callback_url = response_data["pipelineInferenceAPIEndPoint"]["callbackUrl"]
    
#     print(f'Service ID: {service_id}, Callback URL: {callback_url}')
    
#     headers2 = {
#         "Content-Type": "application/json",
#         response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["name"]: response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["value"]
#     }
#     compute_payload = {
#         "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}, "serviceId": service_id}}],
#         "inputData": {"input": [{"source": text}], "audio": [{"audioContent": None}]}
#     }
    
#     print(f'Sending translation request with text: "{text}"')
#     compute_response = requests.post(callback_url, json=compute_payload, headers=headers2)
    
#     if compute_response.status_code != 200:
#         print(f'Error in translation request: {compute_response.status_code}')
#         return {"status_code": compute_response.status_code, "message": "Error in translation", "translated_content": None}
    
#     print('Translation request successful, processing translation...')
#     compute_response_data = compute_response.json()
#     translated_content = compute_response_data["pipelineResponse"][0]["output"][0]["target"]
    
#     print(f'Translation successful. Translated content: "{translated_content}"')
#     return {"status_code": 200, "message": "Translation successful", "translated_content": translated_content}

# # Existing chatbot functions
# VECTOR_COLUMN_NAME = "vector"
# TEXT_COLUMN_NAME = "text"
# HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN")
# proj_dir = Path(__file__).parent

# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)

# # Set up Jinja2 environment
# env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))
# template = env.get_template('template.j2')
# template_html = env.get_template('template_html.j2')

# # Initialize Grok Agent
# api_key = getenv("GROQ_API_KEY")
# if not api_key:
#     gr.Warning("GROQ_API_KEY not found. Set it in 'Repository secrets'.")
#     logger.error("GROQ_API_KEY not found.")
#     api_key = ""  # Fallback, but will fail without a key

# agent = Agent(
#     name="Customs Assistant",
#     role="You are a helpful assistant for CBIC officers, providing guidance on customs procedures and regulations.",
#     instructions=[
#         "You are an expert in customs regulations and CBIC procedures.",
#         "Provide clear, accurate, and professional explanations.",
#         "Use simple language and examples relevant to customs officers.",
#         "Focus on topics like transhipment, AEO schemes, bonds, penalties, and CFS approvals.",
#         "Structure responses with headings and bullet points when helpful.",
#         "If you don’t know the answer, say 'I don’t have enough information to answer that.'"
#     ],
#     model=Groq(id="llama3-70b-8192", api_key=api_key),
#     markdown=True
# )

# def simple_chat_function(message, history, cross_encoder_choice):
#     """Chat function with semantic search and Grok agent integration"""
#     if not message.strip():
#         return "", history, ""
    
#     top_rerank = 25
#     top_k_rank = 20
    
#     try:
#         start_time = perf_counter()
        
#         # Encode query and search documents
#         query_vec = retriever.encode(message)
#         documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list()
#         documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
        
#         # Re-rank documents using cross-encoder
#         if cross_encoder_choice == '(FAST) MiniLM-L6v2':
#             cross_encoder_model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
#         elif cross_encoder_choice == '(ACCURATE) BGE reranker':
#             cross_encoder_model = CrossEncoder('BAAI/bge-reranker-base')
#         elif cross_encoder_choice == '(HIGH ACCURATE) ColBERT':
#             gr.Warning('Retrieving using ColBERT.. First time query may take a minute for model to load..pls wait')
#             from ragatouille import RAGPretrainedModel
#             RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
#             RAG_db = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
#             documents = [item['content'] for item in RAG_db.search(message, k=top_k_rank)]
#             cross_encoder_model = None  # No re-ranking needed for ColBERT

#         if cross_encoder_model:
#             query_doc_pair = [[message, doc] for doc in documents]
#             cross_scores = cross_encoder_model.predict(query_doc_pair)
#             sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
#             documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
        
#         # Create context from top documents
#         context = "\n\n".join(documents[:10]) if documents else ""
#         context = f"Context information from customs materials:\n{context}\n\n"
        
#         # Add conversation history for context
#         history_context = ""
#         if history and len(history) > 0:
#             for user_msg, bot_msg in history[-2:]:  # Last 2 exchanges
#                 if user_msg and bot_msg:
#                     history_context += f"Previous Q: {user_msg}\nPrevious A: {bot_msg}\n"
        
#         # Create full prompt
#         full_prompt = f"{history_context}{context}Question: {message}\n\nPlease answer the question using the context provided above. If the context doesn't contain relevant information, use your general knowledge about CBIC customs procedures."
        
#         # Generate response
#         response = agent.run(full_prompt)
#         response_text = response.content if hasattr(response, 'content') else str(response)
        
#         # Add to history
#         history.append([message, response_text])
        
#         # Render template with documents and query
#         prompt_html = template_html.render(documents=documents, query=message)
        
#         logger.info(f"Response generation took {perf_counter() - start_time:.2f} seconds")
#         return "", history, prompt_html
    
#     except Exception as e:
#         logger.error(f"Error in response generation: {e}")
#         return "", history, f"Error generating response: {str(e)}"

# def translate_text(selected_language, history):
#     """Translate the last response in history to the selected language."""
#     iso_language_codes = {
#         "Hindi": "hi", "Gom": "gom", "Kannada": "kn", "Dogri": "doi", "Bodo": "brx", "Urdu": "ur",
#         "Tamil": "ta", "Kashmiri": "ks", "Assamese": "as", "Bengali": "bn", "Marathi": "mr",
#         "Sindhi": "sd", "Maithili": "mai", "Punjabi": "pa", "Malayalam": "ml", "Manipuri": "mni",
#         "Telugu": "te", "Sanskrit": "sa", "Nepali": "ne", "Santali": "sat", "Gujarati": "gu", "Odia": "or"
#     }
    
#     to_code = iso_language_codes[selected_language]
#     response_text = history[-1][1] if history and history[-1][1] else ''
#     print('response_text for translation', response_text)
#     translation = bhashini_translate(response_text, to_code=to_code)
#     return translation.get('translated_content', 'Translation failed.')

# # Gradio interface
# with gr.Blocks(theme='gradio/soft') as CHATBOT:
#     history_state = gr.State([])
#     with gr.Row():
#         with gr.Column(scale=10):
#             gr.HTML(value="""<div style="color: #FF4500;"><h1>ADWITIYA-</h1> <h1><span style="color: #008000">Custom Manual Chatbot </span></h1></div>""")
#             gr.HTML(value=f"""<p style="font-family: sans-serif; font-size: 16px;">Using GenAI for CBIC Capacity Building - A free chat bot developed by National Customs Targeting Center using Open source LLMs for CBIC Officers</p>""")
#             gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;">Developed by NCTC,Mumbai. Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""")

#         with gr.Column(scale=3):
#             gr.Image(value='logo.png', height=200, width=200)

#     chatbot = gr.Chatbot(
#         [],
#         elem_id="chatbot",
#         avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg',
#                        'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'),
#         bubble_full_width=False,
#         show_copy_button=True,
#         show_share_button=True,
#     )

#     with gr.Row():
#         txt = gr.Textbox(
#             scale=3,
#             show_label=False,
#             placeholder="Enter text and press enter",
#             container=False,
#         )
#         txt_btn = gr.Button(value="Submit text", scale=1)
    
#     cross_encoder = gr.Radio(choices=['(FAST) MiniLM-L6v2', '(ACCURATE) BGE reranker', '(HIGH ACCURATE) ColBERT'], value='(ACCURATE) BGE reranker', label="Embeddings", info="Only First query to Colbert may take little time)")
#     language_dropdown = gr.Dropdown(
#         choices=[
#             "Hindi", "Gom", "Kannada", "Dogri", "Bodo", "Urdu", "Tamil", "Kashmiri", "Assamese", "Bengali", "Marathi",
#             "Sindhi", "Maithili", "Punjabi", "Malayalam", "Manipuri", "Telugu", "Sanskrit", "Nepali", "Santali",
#             "Gujarati", "Odia"
#         ],
#         value="Hindi",
#         label="Select Language for Translation"
#     )
    
#     prompt_html = gr.HTML()
#     translated_textbox = gr.Textbox(label="Translated Response")

#     def update_chat_and_translate(txt, cross_encoder, history_state, language_dropdown):
#         history = history_state.value if history_state.value else []
#         history.append((txt, ""))
        
#         # Call simple_chat_function
#         msg, history, prompt_html_content = simple_chat_function(txt, history, cross_encoder)
        
#         # Translate text
#         translated_text = translate_text(language_dropdown, history)
        
#         return history, prompt_html_content, translated_text

#     txt_msg = txt_btn.click(update_chat_and_translate, [txt, cross_encoder, history_state, language_dropdown], [chatbot, prompt_html, translated_textbox])
#     txt_msg = txt.submit(update_chat_and_translate, [txt, cross_encoder, history_state, language_dropdown], [chatbot, prompt_html, translated_textbox])

#     examples = [
#         'My transhipment cargo is missing',
#         'Can you explain and tabulate the difference between B-17 bond and a warehousing bond?',
#         'What are the benefits of the AEO Scheme and eligibility criteria?',
#         'What are penalties for customs offences?',
#         'What are penalties for customs officers misusing their powers under the Customs Act?',
#         'What are eligibility criteria for exemption from cost recovery charges?',
#         'List in detail the procedure for obtaining new approval for opening a CFS attached to an ICD'
#     ]

#     gr.Examples(examples, txt)

# # Launch the Gradio application
# CHATBOT.launch(share=True, debug=True)# import requests
# # import gradio as gr
# # from ragatouille import RAGPretrainedModel
# # import logging
# # from pathlib import Path
# # from time import perf_counter
# # from sentence_transformers import CrossEncoder
# # from huggingface_hub import InferenceClient
# # from jinja2 import Environment, FileSystemLoader
# # import numpy as np
# # from os import getenv
# # from backend.query_llm import generate_hf, generate_qwen
# # from backend.semantic_search import table, retriever
# # from huggingface_hub import InferenceClient


# # # Bhashini API translation function
# # api_key = getenv('API_KEY')
# # user_id = getenv('USER_ID')

# # def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") -> dict:
# #     """Translates text from source language to target language using the Bhashini API."""
    
# #     if not text.strip():
# #         print('Input text is empty. Please provide valid text for translation.')
# #         return {"status_code": 400, "message": "Input text is empty", "translated_content": None, "speech_content": None}
# #     else:
# #         print('Input text - ',text)
# #     print(f'Starting translation process from {from_code} to {to_code}...')
# #     print(f'Starting translation process from {from_code} to {to_code}...')
# #     gr.Warning(f'Translating to {to_code}...')
    
# #     url = 'https://meity-auth.ulcacontrib.org/ulca/apis/v0/model/getModelsPipeline'
# #     headers = {
# #         "Content-Type": "application/json",
# #         "userID": user_id,
# #         "ulcaApiKey": api_key
# #     }
# #     payload = {
# #         "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}}}],
# #         "pipelineRequestConfig": {"pipelineId": "64392f96daac500b55c543cd"}
# #     }
    
# #     print('Sending initial request to get the pipeline...')
# #     response = requests.post(url, json=payload, headers=headers)
    
# #     if response.status_code != 200:
# #         print(f'Error in initial request: {response.status_code}')
# #         return {"status_code": response.status_code, "message": "Error in translation request", "translated_content": None}

# #     print('Initial request successful, processing response...')
# #     response_data = response.json()
# #     service_id = response_data["pipelineResponseConfig"][0]["config"][0]["serviceId"]
# #     callback_url = response_data["pipelineInferenceAPIEndPoint"]["callbackUrl"]
    
# #     print(f'Service ID: {service_id}, Callback URL: {callback_url}')
    
# #     headers2 = {
# #         "Content-Type": "application/json",
# #         response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["name"]: response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["value"]
# #     }
# #     compute_payload = {
# #         "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}, "serviceId": service_id}}],
# #         "inputData": {"input": [{"source": text}], "audio": [{"audioContent": None}]}
# #     }
    
# #     print(f'Sending translation request with text: "{text}"')
# #     compute_response = requests.post(callback_url, json=compute_payload, headers=headers2)
    
# #     if compute_response.status_code != 200:
# #         print(f'Error in translation request: {compute_response.status_code}')
# #         return {"status_code": compute_response.status_code, "message": "Error in translation", "translated_content": None}
    
# #     print('Translation request successful, processing translation...')
# #     compute_response_data = compute_response.json()
# #     translated_content = compute_response_data["pipelineResponse"][0]["output"][0]["target"]
    
# #     print(f'Translation successful. Translated content: "{translated_content}"')
# #     return {"status_code": 200, "message": "Translation successful", "translated_content": translated_content}


# # # Existing chatbot functions
# # VECTOR_COLUMN_NAME = "vector"
# # TEXT_COLUMN_NAME = "text"
# # HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN")
# # proj_dir = Path(__file__).parent

# # logging.basicConfig(level=logging.INFO)
# # logger = logging.getLogger(__name__)
# # client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1", token=HF_TOKEN)
# # proj_dir = Path(__file__).parent
# # env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))

# # template = env.get_template('template.j2')
# # template_html = env.get_template('template_html.j2')

# # # def add_text(history, text):
# # #     history = [] if history is None else history
# # #     history = history + [(text, None)]
# # #     return history, gr.Textbox(value="", interactive=False)

# # def bot(history, cross_encoder):

# #     top_rerank = 25
# #     top_k_rank = 20
# #     query = history[-1][0] if history else ''
# #     print('\nQuery: ',query )
# #     print('\nHistory:',history)
# #     if not query:
# #         gr.Warning("Please submit a non-empty string as a prompt")
# #         raise ValueError("Empty string was submitted")

# #     logger.warning('Retrieving documents...')
    
# #     if cross_encoder == '(HIGH ACCURATE) ColBERT':
# #         gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait')
# #         RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
# #         RAG_db = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
# #         documents_full = RAG_db.search(query, k=top_k_rank)
        
# #         documents = [item['content'] for item in documents_full]
# #         prompt = template.render(documents=documents, query=query)
# #         prompt_html = template_html.render(documents=documents, query=query)
    
# #         generate_fn = generate_hf
    
# #         history[-1][1] = ""
# #         for character in generate_fn(prompt, history[:-1]):
# #             history[-1][1] = character
# #             yield history, prompt_html
# #     else:
# #         document_start = perf_counter()
    
# #         query_vec = retriever.encode(query)
# #         doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank)
    
# #         documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list()
# #         documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
    
# #         query_doc_pair = [[query, doc] for doc in documents]
# #         if cross_encoder == '(FAST) MiniLM-L6v2':
# #             cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
# #         elif cross_encoder == '(ACCURATE) BGE reranker':
# #             cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
        
# #         cross_scores = cross_encoder1.predict(query_doc_pair)
# #         sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
        
# #         documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
    
# #         document_time = perf_counter() - document_start
    
# #         prompt = template.render(documents=documents, query=query)
# #         prompt_html = template_html.render(documents=documents, query=query)
    
# #         #generate_fn = generate_hf
# #         generate_fn=generate_qwen
# #         # Create a new history entry instead of modifying the tuple directly
# #         new_history = history[:-1] + [ (prompt, "") ] # query replaced prompt
# #         output=''
# #         # for character in generate_fn(prompt, history[:-1]):
# #         #     #new_history[-1] = (query, character) 
# #         #     output+=character
# #         output=generate_fn(prompt, history[:-1])
        
# #         print('Output:',output)
# #         new_history[-1] = (prompt, output) #query replaced with prompt
# #         print('New History',new_history)
# #         #print('prompt html',prompt_html)# Update the last tuple with new text
        
# #         history_list = list(history[-1])
# #         history_list[1] = output  # Assuming `character` is what you want to assign
# #         # Update the history with the modified list converted back to a tuple
# #         history[-1] = tuple(history_list)

# #             #history[-1][1] = character
# #         # yield new_history, prompt_html
# #         yield history, prompt_html
# #          # new_history,prompt_html
# #         # history[-1][1] = ""
# #         # for character in generate_fn(prompt, history[:-1]):
# #         #     history[-1][1] = character
# #         #     yield history, prompt_html

# # #def translate_text(response_text, selected_language):
    
# # def translate_text(selected_language,history):
    
# #     iso_language_codes = {
# #         "Hindi": "hi",
# #         "Gom": "gom",
# #         "Kannada": "kn",
# #         "Dogri": "doi",
# #         "Bodo": "brx",
# #         "Urdu": "ur",
# #         "Tamil": "ta",
# #         "Kashmiri": "ks",
# #         "Assamese": "as",
# #         "Bengali": "bn",
# #         "Marathi": "mr",
# #         "Sindhi": "sd",
# #         "Maithili": "mai",
# #         "Punjabi": "pa",
# #         "Malayalam": "ml",
# #         "Manipuri": "mni",
# #         "Telugu": "te",
# #         "Sanskrit": "sa",
# #         "Nepali": "ne",
# #         "Santali": "sat",
# #         "Gujarati": "gu",
# #         "Odia": "or"
# #     }
    
# #     to_code = iso_language_codes[selected_language]
# #     response_text = history[-1][1] if history else ''
# #     print('response_text for translation',response_text)
# #     translation = bhashini_translate(response_text, to_code=to_code)
# #     return translation['translated_content']
   

# # # Gradio interface
# # with gr.Blocks(theme='gradio/soft') as CHATBOT:
# #     history_state = gr.State([])
# #     with gr.Row():
# #         with gr.Column(scale=10):
# #             gr.HTML(value="""<div style="color: #FF4500;"><h1>ADWITIYA-</h1> <h1><span style="color: #008000">Custom Manual Chatbot </span></h1></div>""")
# #             gr.HTML(value=f"""<p style="font-family: sans-serif; font-size: 16px;">Using GenAI for CBIC Capacity Building - A free chat bot developed by National Customs Targeting Center using Open source LLMs for CBIC Officers</p>""")
# #             gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;">Developed by NCTC,Mumbai. Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""")

# #         with gr.Column(scale=3):
# #             gr.Image(value='logo.png', height=200, width=200)

# #     chatbot = gr.Chatbot(
# #         [],
# #         elem_id="chatbot",
# #         avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg',
# #                        'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'),
# #         bubble_full_width=False,
# #         show_copy_button=True,
# #         show_share_button=True,
# #     )

# #     with gr.Row():
# #         txt = gr.Textbox(
# #             scale=3,
# #             show_label=False,
# #             placeholder="Enter text and press enter",
# #             container=False,
# #         )
# #         txt_btn = gr.Button(value="Submit text", scale=1)
    
# #     cross_encoder = gr.Radio(choices=['(FAST) MiniLM-L6v2', '(ACCURATE) BGE reranker', '(HIGH ACCURATE) ColBERT'], value='(ACCURATE) BGE reranker', label="Embeddings", info="Only First query to Colbert may take little time)")
# #     language_dropdown = gr.Dropdown(
# #         choices=[
# #             "Hindi", "Gom", "Kannada", "Dogri", "Bodo", "Urdu", "Tamil", "Kashmiri", "Assamese", "Bengali", "Marathi",
# #             "Sindhi", "Maithili", "Punjabi", "Malayalam", "Manipuri", "Telugu", "Sanskrit", "Nepali", "Santali",
# #             "Gujarati", "Odia"
# #         ],
# #         value="Hindi",  # default to Hindi
# #         label="Select Language for Translation"
# #     )
    
# #     prompt_html = gr.HTML()
    
# #     translated_textbox = gr.Textbox(label="Translated Response")
# #     def update_history_and_translate(txt, cross_encoder, history_state, language_dropdown):
# #         print('History state',history_state)
# #         history = history_state
# #         history.append((txt, ""))
# #         #history_state.value=(history)
        
# #         # Call bot function
# #         # bot_output = list(bot(history, cross_encoder))
# #         bot_output = next(bot(history, cross_encoder))
# #         print('bot_output',bot_output)
# #         #history, prompt_html = bot_output[-1]
# #         history, prompt_html = bot_output
# #         print('History',history)
# #         # Update the history state
# #         history_state[:] = history
        
# #         # Translate text
# #         translated_text = translate_text(language_dropdown, history)
# #         return history, prompt_html, translated_text

# #     txt_msg = txt_btn.click(update_history_and_translate, [txt, cross_encoder, history_state, language_dropdown], [chatbot, prompt_html, translated_textbox])
# #     txt_msg = txt.submit(update_history_and_translate, [txt, cross_encoder, history_state, language_dropdown], [chatbot, prompt_html, translated_textbox])

# #     examples = ['My transhipment cargo is missing','can u explain and tabulate difference between b 17 bond and a warehousing bond',
# #             'What are benefits of  the AEO Scheme and eligibility criteria?',
# #             'What are penalties for customs offences? ', 'what are penalties to customs officers misusing their powers under customs act?','What are eligibility criteria for exemption from cost recovery charges','list in detail what is procedure for obtaining new approval for openeing a CFS attached to an ICD']

# #     gr.Examples(examples, txt)


# # # Launch the Gradio application
# # CHATBOT.launch(share=True,debug=True)