Spaces:
Running
Running
| import { WebTeleoperator } from "./teleoperators/base-teleoperator"; | |
| import { MotorConfig } from "./types/teleoperation"; | |
| import * as parquet from "parquet-wasm"; | |
| import * as arrow from "apache-arrow"; | |
| import JSZip from "jszip"; | |
| import getMetadataInfo from "./utils/record/metadataInfo"; | |
| import type { VideoInfo } from "./utils/record/metadataInfo"; | |
| import getStats from "./utils/record/stats"; | |
| import generateREADME from "./utils/record/generateREADME"; | |
| import { LeRobotHFUploader } from "./hf_uploader"; | |
| import { LeRobotS3Uploader } from "./s3_uploader"; | |
| // declare a type leRobot action that's basically an array of numbers | |
| interface LeRobotAction { | |
| [key: number]: number; | |
| } | |
| export class LeRobotEpisode { | |
| // we assume that the frames are ordered | |
| public frames: NonIndexedLeRobotDatasetRow[]; | |
| /** | |
| * Optional start time of the episode | |
| * If not set, defaults to the timestamp of the first frame | |
| */ | |
| private _startTime?: number; | |
| /** | |
| * Optional end time of the episode | |
| * If not set, defaults to the timestamp of the last frame | |
| */ | |
| private _endTime?: number; | |
| /** | |
| * Creates a new LeRobotEpisode | |
| * | |
| * @param frames Optional array of frames to initialize the episode with | |
| * @param startTime Optional explicit start time for the episode | |
| * @param endTime Optional explicit end time for the episode | |
| */ | |
| constructor( | |
| frames?: NonIndexedLeRobotDatasetRow[], | |
| startTime?: number, | |
| endTime?: number | |
| ) { | |
| this.frames = frames || []; | |
| this._startTime = startTime; | |
| this._endTime = endTime; | |
| } | |
| /** | |
| * Adds a new frame to the episode | |
| * Ensures frames are always in chronological order | |
| * | |
| * @param frame The frame to add | |
| * @throws Error if the frame's timestamp is before the last frame's timestamp | |
| */ | |
| add(frame: NonIndexedLeRobotDatasetRow) { | |
| const lastFrame = this.frames.at(-1); | |
| if (lastFrame && frame.timestamp < lastFrame.timestamp) { | |
| throw new Error( | |
| `Frame timestamp ${frame.timestamp} is before last frame timestamp ${lastFrame.timestamp}` | |
| ); | |
| } | |
| this.frames.push(frame); | |
| } | |
| /** | |
| * Gets the start time of the episode | |
| * If not explicitly set, returns the timestamp of the first frame | |
| * If no frames exist, throws an error | |
| */ | |
| get startTime(): number { | |
| if (this._startTime !== undefined) { | |
| return this._startTime; | |
| } | |
| const firstFrame = this.frames.at(0); | |
| if (!firstFrame) { | |
| throw new Error("Cannot determine start time: no frames in episode"); | |
| } | |
| return firstFrame.timestamp; | |
| } | |
| /** | |
| * Sets an explicit start time for the episode | |
| */ | |
| set startTime(value: number) { | |
| this._startTime = value; | |
| } | |
| /** | |
| * Gets the end time of the episode | |
| * If not explicitly set, returns the timestamp of the last frame | |
| * If no frames exist, throws an error | |
| */ | |
| get endTime(): number { | |
| if (this._endTime !== undefined) { | |
| return this._endTime; | |
| } | |
| const lastFrame = this.frames.at(-1); | |
| if (!lastFrame) { | |
| throw new Error("Cannot determine end time: no frames in episode"); | |
| } | |
| return lastFrame.timestamp; | |
| } | |
| /** | |
| * Sets an explicit end time for the episode | |
| */ | |
| set endTime(value: number) { | |
| this._endTime = value; | |
| } | |
| /** | |
| * The time difference between the start and end time of the episode, in seconds | |
| */ | |
| get timespan() { | |
| const hasNoFrames = this.frames.length === 0; | |
| if (hasNoFrames) return 0; | |
| return this.endTime - this.startTime; | |
| } | |
| /** | |
| * The number of frames in the episode | |
| */ | |
| get length() { | |
| return this.frames.length; | |
| } | |
| /** | |
| * Creates a new LeRobotEpisode with frames interpolated at regular intervals | |
| * | |
| * @param fps The desired frames per second for the interpolated episode | |
| * @param startIndex The desired starting index for the episode frames, useful when storing multiple episodes | |
| * @returns A new LeRobotEpisode with interpolated frames | |
| */ | |
| getInterpolatedRegularEpisode( | |
| fps: number, | |
| startIndex: number = 0 | |
| ): LeRobotEpisode { | |
| if (this.frames.length === 0) { | |
| return new LeRobotEpisode([], this._startTime, this._endTime); | |
| } | |
| const actualStartTime = | |
| this._startTime !== undefined | |
| ? this._startTime | |
| : this.frames[0].timestamp; | |
| const actualEndTime = | |
| this._endTime !== undefined | |
| ? this._endTime | |
| : this.frames[this.frames.length - 1].timestamp; | |
| const timeDifference = actualEndTime - actualStartTime; | |
| const numFrames = Math.max(1, Math.floor(timeDifference * fps)); | |
| const interpolatedFrames: NonIndexedLeRobotDatasetRow[] = []; | |
| const firstFrame = this.frames[0]; | |
| const lastFrame = this.frames[this.frames.length - 1]; | |
| for (let i = 0; i < numFrames; i++) { | |
| const timestamp = actualStartTime + i / fps; | |
| let frameToAdd: NonIndexedLeRobotDatasetRow; | |
| if (timestamp < firstFrame.timestamp) { | |
| frameToAdd = { ...firstFrame, timestamp }; | |
| frameToAdd.frame_index = i; | |
| frameToAdd.index = startIndex + i; | |
| } else if (timestamp > lastFrame.timestamp) { | |
| frameToAdd = { ...lastFrame, timestamp }; | |
| frameToAdd.frame_index = i; | |
| frameToAdd.index = startIndex + i; | |
| } else { | |
| let lowerIndex = 0; | |
| for (let j = 0; j < this.frames.length - 1; j++) { | |
| if ( | |
| this.frames[j].timestamp <= timestamp && | |
| this.frames[j + 1].timestamp > timestamp | |
| ) { | |
| lowerIndex = j; | |
| break; | |
| } | |
| } | |
| const lowerFrame = this.frames[lowerIndex]; | |
| const upperFrame = this.frames[lowerIndex + 1]; | |
| frameToAdd = LeRobotEpisode.interpolateFrames( | |
| lowerFrame, | |
| upperFrame, | |
| timestamp | |
| ); | |
| frameToAdd.frame_index = i; | |
| frameToAdd.episode_index = lowerFrame.episode_index; | |
| frameToAdd.index = startIndex + i; | |
| frameToAdd.task_index = lowerFrame.task_index; | |
| } | |
| interpolatedFrames.push(frameToAdd); | |
| } | |
| return new LeRobotEpisode( | |
| interpolatedFrames, | |
| actualStartTime, | |
| actualEndTime | |
| ); | |
| } | |
| /** | |
| * Interpolates between two frames to create a new frame at the specified timestamp | |
| * | |
| * @param frame1 The first frame | |
| * @param frame2 The second frame | |
| * @param targetTimestamp The timestamp at which to interpolate | |
| * @returns A new interpolated frame | |
| */ | |
| static interpolateFrames( | |
| frame1: NonIndexedLeRobotDatasetRow, | |
| frame2: NonIndexedLeRobotDatasetRow, | |
| targetTimestamp: number | |
| ): NonIndexedLeRobotDatasetRow { | |
| if ( | |
| targetTimestamp < frame1.timestamp || | |
| targetTimestamp > frame2.timestamp | |
| ) { | |
| throw new Error( | |
| "Target timestamp must be between the timestamps of the two frames" | |
| ); | |
| } | |
| const timeRange = frame2.timestamp - frame1.timestamp; | |
| const interpolationFactor = | |
| (targetTimestamp - frame1.timestamp) / timeRange; | |
| // Interpolate action array | |
| const interpolatedAction = LeRobotEpisode.interpolateArrays( | |
| frame1.action, | |
| frame2.action, | |
| interpolationFactor | |
| ); | |
| // Interpolate observation.state array | |
| const interpolatedObservationState = LeRobotEpisode.interpolateArrays( | |
| frame1["observation.state"], | |
| frame2["observation.state"], | |
| interpolationFactor | |
| ); | |
| // Create the interpolated frame | |
| return { | |
| timestamp: targetTimestamp, | |
| action: interpolatedAction, | |
| "observation.state": interpolatedObservationState, | |
| episode_index: frame1.episode_index, | |
| task_index: frame1.task_index, | |
| // Optional properties are not interpolated | |
| frame_index: frame1.frame_index, | |
| index: frame1.index, | |
| }; | |
| } | |
| /** | |
| * Helper method to interpolate between two arrays | |
| * | |
| * @param array1 First array of values | |
| * @param array2 Second array of values | |
| * @param factor Interpolation factor (0-1) | |
| * @returns Interpolated array | |
| */ | |
| private static interpolateArrays( | |
| array1: any, | |
| array2: any, | |
| factor: number | |
| ): any { | |
| // Handle different types of inputs | |
| if (Array.isArray(array1) && Array.isArray(array2)) { | |
| // For arrays, interpolate each element | |
| return array1.map((value, index) => { | |
| return value + (array2[index] - value) * factor; | |
| }); | |
| } else if (typeof array1 === "object" && typeof array2 === "object") { | |
| // For objects, interpolate each property | |
| const result: any = {}; | |
| for (const key of Object.keys(array1)) { | |
| if (key in array2) { | |
| result[key] = array1[key] + (array2[key] - array1[key]) * factor; | |
| } else { | |
| result[key] = array1[key]; | |
| } | |
| } | |
| return result; | |
| } else { | |
| // For primitive values | |
| return array1 + (array2 - array1) * factor; | |
| } | |
| } | |
| } | |
| /** | |
| * Base interface for LeRobot dataset rows with common fields | |
| */ | |
| export interface NonIndexedLeRobotDatasetRow { | |
| timestamp: number; | |
| action: LeRobotAction; | |
| "observation.state": LeRobotAction; | |
| // properties are optional for back-converstion from normal rows | |
| episode_index: number; | |
| task_index: number; | |
| frame_index?: number; | |
| index?: number; | |
| } | |
| /** | |
| * Represents a complete row in the LeRobot dataset format after indexing | |
| * Used in the final exported dataset | |
| */ | |
| export interface LeRobotDatasetRow extends NonIndexedLeRobotDatasetRow { | |
| frame_index: number; | |
| index: number; | |
| } | |
| /** | |
| * A mechanism to store and record, the video of all associated cameras | |
| * as well as the teleoperator data | |
| * | |
| * follows the lerobot dataset format https://github.com/huggingface/lerobot/blob/cf86b9300dc83fdad408cfe4787b7b09b55f12cf/README.md#the-lerobotdataset-format | |
| */ | |
| export class LeRobotDatasetRecorder { | |
| teleoperators: WebTeleoperator[]; | |
| videoStreams: { [key: string]: MediaStream }; | |
| mediaRecorders: { [key: string]: MediaRecorder }; | |
| videoChunks: { [key: string]: Blob[] }; | |
| videoBlobs: { [key: string]: Blob }; | |
| teleoperatorData: LeRobotEpisode[]; | |
| private _isRecording: boolean; | |
| private episodeIndex: number = 0; | |
| private taskIndex: number = 0; | |
| fps: number; | |
| taskDescription: string; | |
| /** | |
| * Ensures BlobPart compatibility across environments by converting Uint8Array | |
| * to an ArrayBuffer with correct bounds and ArrayBuffer typing. | |
| */ | |
| private static toArrayBuffer(uint8: Uint8Array): ArrayBuffer { | |
| const buffer = uint8.buffer; | |
| if (buffer instanceof ArrayBuffer) { | |
| return buffer.slice( | |
| uint8.byteOffset, | |
| uint8.byteOffset + uint8.byteLength | |
| ); | |
| } | |
| // Handle SharedArrayBuffer case by copying to ArrayBuffer | |
| const arrayBuffer = new ArrayBuffer(uint8.byteLength); | |
| new Uint8Array(arrayBuffer).set(uint8); | |
| return arrayBuffer; | |
| } | |
| constructor( | |
| teleoperators: WebTeleoperator[], | |
| videoStreams: { [key: string]: MediaStream }, | |
| fps: number, | |
| taskDescription: string = "Default task description" | |
| ) { | |
| this.teleoperators = []; | |
| if (teleoperators.length > 1) | |
| throw Error(` | |
| Currently, only 1 teleoperator can be recorded at a time! | |
| Note : Do not attempt to create 2 different recorders via 2 different teleoperators, this would not work either | |
| `); | |
| this.addTeleoperator(teleoperators[0]); | |
| this.mediaRecorders = {}; | |
| this.videoChunks = {}; | |
| this.videoBlobs = {}; | |
| this.videoStreams = {}; | |
| this.teleoperatorData = []; | |
| this._isRecording = false; | |
| this.fps = fps; | |
| this.taskDescription = taskDescription; | |
| for (const [key, stream] of Object.entries(videoStreams)) { | |
| this.addVideoStream(key, stream); | |
| } | |
| } | |
| get isRecording(): boolean { | |
| return this._isRecording; | |
| } | |
| get currentEpisode(): LeRobotEpisode | undefined { | |
| return this.teleoperatorData.at(-1); | |
| } | |
| /** | |
| * Adds a new video stream to be recorded | |
| * @param key The key to identify this video stream | |
| * @param stream The media stream to record from | |
| */ | |
| addVideoStream(key: string, stream: MediaStream) { | |
| console.log("Adding video stream", key); | |
| if (this._isRecording) { | |
| throw new Error("Cannot add video streams while recording"); | |
| } | |
| // Add to video streams dictionary | |
| this.videoStreams[key] = stream; | |
| // Initialize MediaRecorder for this stream | |
| this.mediaRecorders[key] = new MediaRecorder(stream, { | |
| mimeType: "video/mp4", | |
| }); | |
| // add a video chunk array for this stream | |
| this.videoChunks[key] = []; | |
| } | |
| /** | |
| * Add a new teleoperator and set up state update callbacks | |
| * for recording joint position data in the LeRobot dataset format | |
| * | |
| * @param teleoperator The teleoperator to add callbacks to | |
| */ | |
| addTeleoperator(teleoperator: WebTeleoperator) { | |
| teleoperator.addOnStateUpdateCallback((params) => { | |
| if (this._isRecording) { | |
| if (!this.currentEpisode) | |
| throw Error( | |
| "There is no current episode while recording, something is wrong!, this means that no frames exist on the recorder for some reason" | |
| ); | |
| // Create a frame with the current state data | |
| // Using the normalized configs for consistent data ranges | |
| const frame: NonIndexedLeRobotDatasetRow = { | |
| timestamp: params.commandSentTimestamp, | |
| // For observation state, use the current motor positions | |
| "observation.state": this.convertMotorConfigToArray( | |
| params.newMotorConfigsNormalized | |
| ), | |
| // For action, use the target positions that were commanded | |
| action: this.convertMotorConfigToArray( | |
| params.previousMotorConfigsNormalized | |
| ), | |
| episode_index: this.episodeIndex, | |
| task_index: this.taskIndex, | |
| }; | |
| // Add the frame to the current episode | |
| this.currentEpisode.add(frame); | |
| } | |
| }); | |
| this.teleoperators.push(teleoperator); | |
| } | |
| /** | |
| * Starts recording for all teleoperators and video streams | |
| */ | |
| startRecording() { | |
| console.log("Starting recording"); | |
| if (this._isRecording) { | |
| console.warn("Recording already in progress"); | |
| return; | |
| } | |
| this._isRecording = true; | |
| // add a new episode | |
| this.teleoperatorData.push(new LeRobotEpisode()); | |
| // Start recording video streams | |
| Object.entries(this.videoStreams).forEach(([key, stream]) => { | |
| // Create a media recorder for this stream | |
| const mediaRecorder = new MediaRecorder(stream, { | |
| mimeType: "video/mp4", | |
| }); | |
| // Handle data available events | |
| mediaRecorder.ondataavailable = (event) => { | |
| console.log("data available for", key); | |
| if (event.data && event.data.size > 0) { | |
| this.videoChunks[key].push(event.data); | |
| } | |
| }; | |
| // Save the recorder and start recording | |
| this.mediaRecorders[key] = mediaRecorder; | |
| mediaRecorder.start(1000); // Capture in 1-second chunks | |
| console.log(`Started recording video stream: ${key}`); | |
| }); | |
| } | |
| setEpisodeIndex(index: number): void { | |
| this.episodeIndex = index; | |
| } | |
| setTaskIndex(index: number): void { | |
| this.taskIndex = index; | |
| } | |
| /** | |
| * teleoperatorData by default only contains data | |
| * for the episodes in a non-regularized manner | |
| * | |
| * this function returns episodes in a regularized manner, wherein | |
| * the frames in each are interpolated through so that all frames are spaced | |
| * equally through each other | |
| */ | |
| get episodes(): LeRobotEpisode[] { | |
| const regularizedEpisodes: LeRobotEpisode[] = []; | |
| let lastFrameIndex = 0; | |
| for (let i = 0; i < this.teleoperatorData.length; i++) { | |
| let episode = this.teleoperatorData[i]; | |
| const regularizedEpisode = episode.getInterpolatedRegularEpisode( | |
| this.fps, | |
| lastFrameIndex | |
| ); | |
| regularizedEpisodes.push(regularizedEpisode); | |
| lastFrameIndex += regularizedEpisode.frames?.at(-1)?.index || 0; | |
| } | |
| return regularizedEpisodes; | |
| } | |
| /** | |
| * Stops recording for all teleoperators and video streams | |
| * @returns An object containing teleoperator data and video blobs | |
| */ | |
| async stopRecording() { | |
| if (!this._isRecording) { | |
| console.warn("No recording in progress"); | |
| return { teleoperatorData: [], videoBlobs: {} }; | |
| } | |
| this._isRecording = false; | |
| // Stop all media recorders | |
| const stopPromises = Object.entries(this.mediaRecorders).map( | |
| ([key, recorder]) => { | |
| return new Promise<void>((resolve) => { | |
| // Only do this if the recorder is active | |
| if (recorder.state === "inactive") { | |
| resolve(); | |
| return; | |
| } | |
| // When the recorder stops, create a blob | |
| recorder.onstop = () => { | |
| // Combine all chunks into a single blob | |
| const chunks = this.videoChunks[key] || []; | |
| const blob = new Blob(chunks, { type: "video/mp4" }); | |
| this.videoBlobs[key] = blob; | |
| resolve(); | |
| }; | |
| // Stop the recorder | |
| recorder.stop(); | |
| }); | |
| } | |
| ); | |
| // Wait for all recorders to stop | |
| await Promise.all(stopPromises); | |
| return { | |
| teleoperatorData: this.episodes, | |
| videoBlobs: this.videoBlobs, | |
| }; | |
| } | |
| /** | |
| * Clears the teleoperator data and video blobs | |
| */ | |
| clearRecording() { | |
| this.teleoperatorData = []; | |
| this.videoBlobs = {}; | |
| } | |
| /** | |
| * Action is a dictionary of motor positions, timestamp1 and timestamp2 are when the actions occurred | |
| * reqTimestamp must be between timestamp1 and timestamp2 | |
| * | |
| * the keys in action1 and action2 must match, this will loop through the dictionary | |
| * and interpolate each action to the required timestamp | |
| * | |
| * @param action1 Motor positions at timestamp1 | |
| * @param action2 Motor positions at timestamp2 | |
| * @param timestamp1 The timestamp of action1 | |
| * @param timestamp2 The timestamp of action2 | |
| * @param reqTimestamp The timestamp at which to interpolate | |
| * @returns The interpolated action | |
| */ | |
| _actionInterpolatate( | |
| action1: any, | |
| action2: any, | |
| timestamp1: number, | |
| timestamp2: number, | |
| reqTimestamp: number | |
| ): any { | |
| if (reqTimestamp < timestamp1 || reqTimestamp > timestamp2) | |
| throw new Error("reqTimestamp must be between timestamp1 and timestamp2"); | |
| if (timestamp2 < timestamp1) | |
| throw new Error("timestamp2 must be greater than timestamp1"); | |
| const numActions = Object.keys(action1).length; | |
| const interpolatedAction: any = {}; | |
| const timeRange = timestamp2 - timestamp1; | |
| for (let i = 0; i < numActions; i++) { | |
| const key = Object.keys(action1)[i]; | |
| interpolatedAction[key] = | |
| action1[key] + | |
| ((action2[key] - action1[key]) * (reqTimestamp - timestamp1)) / | |
| timeRange; | |
| } | |
| return interpolatedAction; | |
| } | |
| /** | |
| * Converts an action object to an array of numbers | |
| * follows the same pattern as https://huggingface.co/datasets/lerobot/svla_so100_pickplace | |
| * I am not really sure if the array can be in a different order | |
| * but I am not going to risk it tbh 😛 | |
| * | |
| * @param action The action object to convert | |
| * @returns An array of numbers | |
| */ | |
| convertActionToArray(action: any): number[] { | |
| return [ | |
| action["shoulder_pan"], | |
| action["shoulder_lift"], | |
| action["elbow_flex"], | |
| action["wrist_flex"], | |
| action["wrist_roll"], | |
| action["gripper"], | |
| ]; | |
| } | |
| /** | |
| * Converts an array of MotorConfig objects to an action object | |
| * following the same joint order as convertActionToArray | |
| * | |
| * @param motorConfigs Array of MotorConfig objects | |
| * @returns An action object with joint positions | |
| */ | |
| convertMotorConfigToArray(motorConfigs: MotorConfig[]): number[] { | |
| // Create a map for quick lookup of motor positions by name | |
| const motorMap: Record<string, number> = {}; | |
| for (const config of motorConfigs) { | |
| motorMap[config.name] = config.currentPosition; | |
| } | |
| // Define required joint names | |
| const requiredJoints = [ | |
| "shoulder_pan", | |
| "shoulder_lift", | |
| "elbow_flex", | |
| "wrist_flex", | |
| "wrist_roll", | |
| "gripper", | |
| ]; | |
| // Check that all required joints are present | |
| const missingJoints = requiredJoints.filter( | |
| (joint) => motorMap[joint] === undefined | |
| ); | |
| if (missingJoints.length > 0) { | |
| throw new Error( | |
| `Missing required joints in motor configs: ${missingJoints.join( | |
| ", " | |
| )}. Available joints: ${Object.keys(motorMap).join(", ")}` | |
| ); | |
| } | |
| // Return in the same order as convertActionToArray | |
| return [ | |
| motorMap["shoulder_pan"], | |
| motorMap["shoulder_lift"], | |
| motorMap["elbow_flex"], | |
| motorMap["wrist_flex"], | |
| motorMap["wrist_roll"], | |
| motorMap["gripper"], | |
| ]; | |
| } | |
| /** | |
| * Finds the closest timestamp to the target timestamp | |
| * | |
| * the data must have timestamps in ascending order | |
| * uses binary search to get the closest timestamp | |
| * | |
| * @param data The data to search through | |
| * @param targetTimestamp The target timestamp | |
| * @returns The closest timestamp in the data's index | |
| */ | |
| _findClosestTimestampBefore(data: any[], targetTimestamp: number): number { | |
| let firstIndex = 0; | |
| let lastIndex = data.length - 1; | |
| while (firstIndex <= lastIndex) { | |
| const middleIndex = Math.floor((firstIndex + lastIndex) / 2); | |
| const middleTimestamp = data[middleIndex].timestamp; | |
| if (middleTimestamp === targetTimestamp) { | |
| return middleIndex; | |
| } else if (middleTimestamp < targetTimestamp) { | |
| firstIndex = middleIndex + 1; | |
| } else { | |
| lastIndex = middleIndex - 1; | |
| } | |
| } | |
| return lastIndex; | |
| } | |
| /** | |
| * Takes non-regularly spaced lerobot-ish data and interpolates it to a regularly spaced dataset | |
| * also adds additional | |
| * - frame_index | |
| * - episode_index | |
| * - index columns | |
| * | |
| * to match lerobot dataset requirements | |
| */ | |
| _interpolateAndCompleteLerobotData( | |
| fps: number, | |
| frameData: NonIndexedLeRobotDatasetRow[], | |
| lastFrameIndex: number | |
| ): LeRobotDatasetRow[] { | |
| const interpolatedData: LeRobotDatasetRow[] = []; | |
| const minTimestamp = frameData[0].timestamp; | |
| const maxTimestamp = frameData[frameData.length - 1].timestamp; | |
| const timeDifference = maxTimestamp - minTimestamp; | |
| const numFrames = Math.floor(timeDifference * fps); | |
| const firstFrame = frameData[0]; | |
| console.log( | |
| "frames before interpolation", | |
| numFrames, | |
| frameData[0].timestamp, | |
| frameData[frameData.length - 1].timestamp, | |
| fps | |
| ); | |
| interpolatedData.push({ | |
| timestamp: firstFrame.timestamp, | |
| action: this.convertActionToArray(firstFrame.action), | |
| "observation.state": this.convertActionToArray( | |
| firstFrame["observation.state"] | |
| ), | |
| episode_index: firstFrame.episode_index, | |
| task_index: firstFrame.task_index, | |
| frame_index: 0, | |
| index: lastFrameIndex, | |
| }); | |
| // start from 1 as the first frame is pushed already (see above) | |
| for (let i = 1; i < numFrames; i++) { | |
| const timestamp = i / fps; | |
| const closestIndex = this._findClosestTimestampBefore( | |
| frameData, | |
| timestamp | |
| ); | |
| const nextIndex = closestIndex + 1; | |
| const closestItemData = frameData[closestIndex]; | |
| const nextItemData = frameData[nextIndex]; | |
| const action = this._actionInterpolatate( | |
| closestItemData.action, | |
| nextItemData.action, | |
| closestItemData.timestamp, | |
| nextItemData.timestamp, | |
| timestamp | |
| ); | |
| const observation_state = this._actionInterpolatate( | |
| closestItemData["observation.state"], | |
| nextItemData["observation.state"], | |
| closestItemData.timestamp, | |
| nextItemData.timestamp, | |
| timestamp | |
| ); | |
| interpolatedData.push({ | |
| timestamp: timestamp, | |
| action: this.convertActionToArray(action), | |
| "observation.state": this.convertActionToArray(observation_state), | |
| episode_index: closestItemData.episode_index, | |
| task_index: closestItemData.task_index, | |
| frame_index: i, | |
| index: lastFrameIndex + i, | |
| }); | |
| } | |
| return interpolatedData; | |
| } | |
| /** | |
| * converts all the frames of a recording into lerobot dataset frame style | |
| * | |
| * NOTE : This does not interpolate the data, you are only working with raw data | |
| * that is called by the teleop when things are actively "changing" | |
| * @param episodeRough | |
| */ | |
| _convertToLeRobotDataFormatFrames( | |
| episodeRough: any[] | |
| ): NonIndexedLeRobotDatasetRow[] { | |
| const properFormatFrames: NonIndexedLeRobotDatasetRow[] = []; | |
| const firstTimestamp = episodeRough[0].commandSentTimestamp; | |
| for (let i = 0; i < episodeRough.length; i++) { | |
| const frameRough = episodeRough[i]; | |
| properFormatFrames.push({ | |
| timestamp: frameRough.commandSentTimestamp - firstTimestamp, // so timestamps start from 0, and are in seconds | |
| action: frameRough.previousMotorConfigsNormalized, | |
| "observation.state": frameRough.newMotorConfigsNormalized, | |
| episode_index: frameRough.episodeIndex, | |
| task_index: frameRough.taskIndex, | |
| }); | |
| } | |
| return properFormatFrames; | |
| } | |
| /** | |
| * Converts teleoperator data to a parquet blob | |
| * @private | |
| * @returns Array of objects containing parquet file content and path | |
| */ | |
| private async _exportEpisodesToBlob( | |
| episodes: LeRobotEpisode[] | |
| ): Promise<{ content: Blob; path: string }[]> { | |
| // combine all the frames | |
| let data: NonIndexedLeRobotDatasetRow[] = []; | |
| const episodeBlobs: any[] = []; | |
| for (let i = 0; i < episodes.length; i++) { | |
| const episode = episodes[i]; | |
| data = episode.frames; | |
| const { tableFromArrays, vectorFromArray } = arrow; | |
| const timestamps = data.map((row: any) => row.timestamp); | |
| const actions = data.map((row: any) => row.action); | |
| const observationStates = data.map( | |
| (row: any) => row["observation.state"] | |
| ); | |
| const episodeIndexes = data.map((row: any) => row.episode_index); | |
| const taskIndexes = data.map((row: any) => row.task_index); | |
| const frameIndexes = data.map((row: any) => row.frame_index); | |
| const indexes = data.map((row: any) => row.index); | |
| const table = tableFromArrays({ | |
| timestamp: timestamps, | |
| // @ts-ignore, this works, idk why | |
| action: vectorFromArray( | |
| actions, | |
| new arrow.List(new arrow.Field("item", new arrow.Float32())) | |
| ), | |
| // @ts-ignore, this works, idk why | |
| "observation.state": vectorFromArray( | |
| observationStates, | |
| new arrow.List(new arrow.Field("item", new arrow.Float32())) | |
| ), | |
| episode_index: episodeIndexes, | |
| task_index: taskIndexes, | |
| frame_index: frameIndexes, | |
| index: indexes, | |
| }); | |
| const wasmUrl = | |
| "https://cdn.jsdelivr.net/npm/[email protected]/esm/parquet_wasm_bg.wasm"; | |
| const initWasm = parquet.default; | |
| await initWasm(wasmUrl); | |
| const wasmTable = parquet.Table.fromIPCStream( | |
| arrow.tableToIPC(table, "stream") | |
| ); | |
| const writerProperties = new parquet.WriterPropertiesBuilder() | |
| .setCompression(parquet.Compression.UNCOMPRESSED) | |
| .build(); | |
| const parquetUint8Array = parquet.writeParquet( | |
| wasmTable, | |
| writerProperties | |
| ); | |
| const numpadded = i.toString().padStart(6, "0"); | |
| const content = new Blob([ | |
| LeRobotDatasetRecorder.toArrayBuffer(parquetUint8Array as Uint8Array), | |
| ]); | |
| episodeBlobs.push({ | |
| content, | |
| path: `data/chunk-000/episode_${numpadded}.parquet`, | |
| }); | |
| } | |
| return episodeBlobs; | |
| } | |
| /** | |
| * Exports the teleoperator data in lerobot format | |
| * @param format The format to return the data in ('json' or 'blob') | |
| * @returns Either an array of data objects or a Uint8Array blob depending on format | |
| */ | |
| exportEpisodes(format: "json" | "blob" = "json") { | |
| if (this._isRecording) | |
| throw new Error("This can only be called after recording has stopped!"); | |
| const data = this.episodes; | |
| if (format === "json") { | |
| return data; | |
| } else { | |
| return this._exportEpisodesToBlob(data); | |
| } | |
| } | |
| /** | |
| * Exports the media (video) data as blobs | |
| * @returns A dictionary of video blobs with the same keys as videoStreams | |
| */ | |
| async exportMediaData(): Promise<{ [key: string]: Blob }> { | |
| if (this._isRecording) | |
| throw new Error("This can only be called after recording has stopped!"); | |
| return this.videoBlobs; | |
| } | |
| /** | |
| * Generates metadata for the dataset | |
| * @returns Metadata object for the LeRobot dataset | |
| */ | |
| async generateMetadata(data: any[]): Promise<any> { | |
| // Calculate total episodes, frames, and tasks | |
| let total_episodes = 0; | |
| const total_frames = data.length; | |
| let total_tasks = 0; | |
| for (const row of data) { | |
| total_episodes = Math.max(total_episodes, row.episode_index); | |
| total_tasks = Math.max(total_tasks, row.task_index); | |
| } | |
| // Create video info objects for each video stream | |
| const videos_info: VideoInfo[] = Object.keys(this.videoBlobs).map((key) => { | |
| // Default values - in a production environment, you would extract | |
| // these from the actual video metadata using the key to identify the video source | |
| console.log(`Generating metadata for video stream: ${key}`); | |
| return { | |
| height: 480, | |
| width: 640, | |
| channels: 3, | |
| codec: "h264", | |
| pix_fmt: "yuv420p", | |
| is_depth_map: false, | |
| has_audio: false, | |
| }; | |
| }); | |
| // Calculate approximate file sizes in MB | |
| const data_files_size_in_mb = Math.round(data.length * 0.001); // Estimate | |
| // Calculate video size by summing the sizes of all video blobs and converting to MB | |
| let video_files_size_in_mb = 0; | |
| for (const blob of Object.values(this.videoBlobs)) { | |
| video_files_size_in_mb += blob.size / (1024 * 1024); | |
| } | |
| video_files_size_in_mb = Math.round(video_files_size_in_mb); | |
| // Generate and return the metadata | |
| return getMetadataInfo({ | |
| total_episodes, | |
| total_frames, | |
| total_tasks, | |
| chunks_size: 1000, // Default chunk size | |
| fps: this.fps, | |
| splits: { train: `0:${total_episodes}` }, // All episodes in train split | |
| features: {}, // Additional features can be added here | |
| videos_info, | |
| data_files_size_in_mb, | |
| video_files_size_in_mb, | |
| }); | |
| } | |
| /** | |
| * Generates statistics for the dataset | |
| * @returns Statistics object for the LeRobot dataset | |
| */ | |
| async getStatistics(data: any[]): Promise<any> { | |
| // Get camera keys from the video blobs | |
| const cameraKeys = Object.keys(this.videoBlobs); | |
| // Generate stats using the data and camera keys | |
| return getStats(data, cameraKeys); | |
| } | |
| /** | |
| * Creates a tasks.parquet file containing task description | |
| * @returns A Uint8Array blob containing the parquet data | |
| */ | |
| async createTasksParquet(): Promise<Uint8Array> { | |
| // Create a simple data structure with the task description | |
| const tasksData = [ | |
| { | |
| task_index: 0, | |
| __index_level_0__: this.taskDescription, | |
| }, | |
| ]; | |
| // Create Arrow table from the data | |
| const taskIndexArr = arrow.vectorFromArray( | |
| tasksData.map((d) => d.task_index), | |
| new arrow.Int32() | |
| ); | |
| const descriptionArr = arrow.vectorFromArray( | |
| tasksData.map((d) => d.__index_level_0__), | |
| new arrow.Utf8() | |
| ); | |
| const table = arrow.tableFromArrays({ | |
| // @ts-ignore, this works, idk why | |
| task_index: taskIndexArr, | |
| // @ts-ignore, this works, idk why | |
| __index_level_0__: descriptionArr, | |
| }); | |
| // Initialize the WASM module | |
| const wasmUrl = | |
| "https://cdn.jsdelivr.net/npm/[email protected]/esm/parquet_wasm_bg.wasm"; | |
| const initWasm = parquet.default; | |
| await initWasm(wasmUrl); | |
| // Convert Arrow table to Parquet WASM table | |
| const wasmTable = parquet.Table.fromIPCStream( | |
| arrow.tableToIPC(table, "stream") | |
| ); | |
| // Set compression properties | |
| const writerProperties = new parquet.WriterPropertiesBuilder() | |
| .setCompression(parquet.Compression.UNCOMPRESSED) | |
| .build(); | |
| // Write the Parquet file | |
| return parquet.writeParquet(wasmTable, writerProperties); | |
| } | |
| /** | |
| * Creates the episodes statistics parquet file | |
| * @returns A Uint8Array blob containing the parquet data | |
| */ | |
| async getEpisodeStatistics(data: any[]): Promise<Uint8Array> { | |
| const { vectorFromArray } = arrow; | |
| const statistics = await this.getStatistics(data); | |
| // Calculate total episodes and frames | |
| let total_episodes = 0; | |
| for (let row of data) { | |
| total_episodes = Math.max(total_episodes, row.episode_index); | |
| } | |
| total_episodes += 1; // +1 since episodes start from 0 | |
| const episodes: any[] = []; | |
| // we'll create one row per episode | |
| for ( | |
| let episode_index = 0; | |
| episode_index < total_episodes; | |
| episode_index++ | |
| ) { | |
| // Get data for this episode only | |
| const episodeData = data.filter( | |
| (row) => row.episode_index === episode_index | |
| ); | |
| // Extract timestamps for this episode | |
| const timestamps = episodeData.map((row) => row.timestamp); | |
| let min_timestamp = Infinity; | |
| let max_timestamp = -Infinity; | |
| for (let timestamp of timestamps) { | |
| min_timestamp = Math.min(min_timestamp, timestamp); | |
| max_timestamp = Math.max(max_timestamp, timestamp); | |
| } | |
| // Camera keys from video blobs | |
| const cameraKeys = Object.keys(this.videoBlobs); | |
| // Create entry for this episode | |
| const episodeEntry: any = { | |
| // Basic episode information | |
| episode_index: episode_index, | |
| "data/chunk_index": 0, | |
| "data/file_index": 0, | |
| dataset_from_index: 0, | |
| dataset_to_index: episodeData.length - 1, | |
| length: episodeData.length, | |
| tasks: [0], // Task index 0, could be extended for multiple tasks | |
| // Meta information | |
| "meta/episodes/chunk_index": 0, | |
| "meta/episodes/file_index": 0, | |
| }; | |
| // Add video information for each camera | |
| cameraKeys.forEach((key) => { | |
| episodeEntry[`videos/observation.images.${key}/chunk_index`] = 0; | |
| episodeEntry[`videos/observation.images.${key}/file_index`] = 0; | |
| episodeEntry[`videos/observation.images.${key}/from_timestamp`] = | |
| min_timestamp; | |
| episodeEntry[`videos/observation.images.${key}/to_timestamp`] = | |
| max_timestamp; | |
| }); | |
| // Add statistics for each field | |
| // This is a simplified approach - in a real implementation, you'd calculate | |
| // these values for each episode individually | |
| // Add timestamp statistics | |
| episodeEntry["stats/timestamp/min"] = [statistics.timestamp.min]; | |
| episodeEntry["stats/timestamp/max"] = [statistics.timestamp.max]; | |
| episodeEntry["stats/timestamp/mean"] = [statistics.timestamp.mean]; | |
| episodeEntry["stats/timestamp/std"] = [statistics.timestamp.std]; | |
| episodeEntry["stats/timestamp/count"] = [statistics.timestamp.count]; | |
| // Add frame_index statistics | |
| episodeEntry["stats/frame_index/min"] = [statistics.frame_index.min]; | |
| episodeEntry["stats/frame_index/max"] = [statistics.frame_index.max]; | |
| episodeEntry["stats/frame_index/mean"] = [statistics.frame_index.mean]; | |
| episodeEntry["stats/frame_index/std"] = [statistics.frame_index.std]; | |
| episodeEntry["stats/frame_index/count"] = [statistics.frame_index.count]; | |
| // Add episode_index statistics | |
| episodeEntry["stats/episode_index/min"] = [statistics.episode_index.min]; | |
| episodeEntry["stats/episode_index/max"] = [statistics.episode_index.max]; | |
| episodeEntry["stats/episode_index/mean"] = [ | |
| statistics.episode_index.mean, | |
| ]; | |
| episodeEntry["stats/episode_index/std"] = [statistics.episode_index.std]; | |
| episodeEntry["stats/episode_index/count"] = [ | |
| statistics.episode_index.count, | |
| ]; | |
| // Add task_index statistics | |
| episodeEntry["stats/task_index/min"] = [statistics.task_index.min]; | |
| episodeEntry["stats/task_index/max"] = [statistics.task_index.max]; | |
| episodeEntry["stats/task_index/mean"] = [statistics.task_index.mean]; | |
| episodeEntry["stats/task_index/std"] = [statistics.task_index.std]; | |
| episodeEntry["stats/task_index/count"] = [statistics.task_index.count]; | |
| // Add index statistics | |
| episodeEntry["stats/index/min"] = [0]; | |
| episodeEntry["stats/index/max"] = [episodeData.length - 1]; | |
| episodeEntry["stats/index/mean"] = [episodeData.length / 2]; | |
| episodeEntry["stats/index/std"] = [episodeData.length / 4]; // Approximate std | |
| episodeEntry["stats/index/count"] = [episodeData.length]; | |
| // Add action statistics (placeholder) | |
| episodeEntry["stats/action/min"] = [0.0]; | |
| episodeEntry["stats/action/max"] = [1.0]; | |
| episodeEntry["stats/action/mean"] = [0.5]; | |
| episodeEntry["stats/action/std"] = [0.2]; | |
| episodeEntry["stats/action/count"] = [episodeData.length]; | |
| // Add observation.state statistics (placeholder) | |
| episodeEntry["stats/observation.state/min"] = [0.0]; | |
| episodeEntry["stats/observation.state/max"] = [1.0]; | |
| episodeEntry["stats/observation.state/mean"] = [0.5]; | |
| episodeEntry["stats/observation.state/std"] = [0.2]; | |
| episodeEntry["stats/observation.state/count"] = [episodeData.length]; | |
| // Add observation.images statistics for each camera | |
| cameraKeys.forEach((key) => { | |
| // Get the image statistics from the overall statistics | |
| const imageStats = statistics[`observation.images.${key}`] || { | |
| min: [[[0.0]], [[0.0]], [[0.0]]], | |
| max: [[[255.0]], [[255.0]], [[255.0]]], | |
| mean: [[[127.5]], [[127.5]], [[127.5]]], | |
| std: [[[50.0]], [[50.0]], [[50.0]]], | |
| count: [[[episodeData.length * 3]]], | |
| }; | |
| episodeEntry[`stats/observation.images.${key}/min`] = imageStats.min; | |
| episodeEntry[`stats/observation.images.${key}/max`] = imageStats.max; | |
| episodeEntry[`stats/observation.images.${key}/mean`] = imageStats.mean; | |
| episodeEntry[`stats/observation.images.${key}/std`] = imageStats.std; | |
| episodeEntry[`stats/observation.images.${key}/count`] = | |
| imageStats.count; | |
| }); | |
| episodes.push(episodeEntry); | |
| } | |
| // Create vector arrays for each column | |
| const columns: any = {}; | |
| // Define column names and default types | |
| const columnNames = [ | |
| "episode_index", | |
| "data/chunk_index", | |
| "data/file_index", | |
| "dataset_from_index", | |
| "dataset_to_index", | |
| "length", | |
| "meta/episodes/chunk_index", | |
| "meta/episodes/file_index", | |
| "tasks", | |
| ]; | |
| // Add camera-specific columns | |
| const cameraKeys = Object.keys(this.videoBlobs); | |
| cameraKeys.forEach((key) => { | |
| columnNames.push( | |
| `videos/observation.images.${key}/chunk_index`, | |
| `videos/observation.images.${key}/file_index`, | |
| `videos/observation.images.${key}/from_timestamp`, | |
| `videos/observation.images.${key}/to_timestamp` | |
| ); | |
| }); | |
| // Add statistic columns for each field | |
| const statFields = [ | |
| "timestamp", | |
| "frame_index", | |
| "episode_index", | |
| "task_index", | |
| "index", | |
| "action", | |
| "observation.state", | |
| ]; | |
| statFields.forEach((field) => { | |
| columnNames.push( | |
| `stats/${field}/min`, | |
| `stats/${field}/max`, | |
| `stats/${field}/mean`, | |
| `stats/${field}/std`, | |
| `stats/${field}/count` | |
| ); | |
| }); | |
| // Add image statistic columns for each camera | |
| cameraKeys.forEach((key) => { | |
| columnNames.push( | |
| `stats/observation.images.${key}/min`, | |
| `stats/observation.images.${key}/max`, | |
| `stats/observation.images.${key}/mean`, | |
| `stats/observation.images.${key}/std`, | |
| `stats/observation.images.${key}/count` | |
| ); | |
| }); | |
| // Create vector arrays for each column | |
| columnNames.forEach((columnName) => { | |
| const values = episodes.map((ep) => ep[columnName] || 0); | |
| // Check if the column is an array type and needs special handling | |
| if (columnName.includes("stats/") || columnName === "tasks") { | |
| // Handle different types of array columns based on their naming pattern | |
| if (columnName.includes("/count")) { | |
| // Bigint arrays for count fields | |
| // @ts-ignore | |
| columns[columnName] = vectorFromArray( | |
| values.map((v) => Number(v)), | |
| new arrow.List(new arrow.Field("item", new arrow.Int64())) | |
| ); | |
| } else if ( | |
| columnName.includes("/min") || | |
| columnName.includes("/max") || | |
| columnName.includes("/mean") || | |
| columnName.includes("/std") | |
| ) { | |
| // Double arrays for min, max, mean, std fields | |
| if ( | |
| columnName.includes("observation.images") && | |
| (columnName.includes("/min") || | |
| columnName.includes("/max") || | |
| columnName.includes("/mean") || | |
| columnName.includes("/std")) | |
| ) { | |
| // These are 3D arrays [[[value]]] | |
| // For 3D arrays, we need nested Lists | |
| // @ts-ignore | |
| columns[columnName] = vectorFromArray( | |
| values, | |
| new arrow.List( | |
| new arrow.Field( | |
| "item", | |
| new arrow.List( | |
| new arrow.Field( | |
| "subitem", | |
| new arrow.List( | |
| new arrow.Field("value", new arrow.Float64()) | |
| ) | |
| ) | |
| ) | |
| ) | |
| ) | |
| ); | |
| } else { | |
| // These are normal arrays [value] | |
| // @ts-ignore | |
| columns[columnName] = vectorFromArray( | |
| values, | |
| new arrow.List(new arrow.Field("item", new arrow.Float64())) | |
| ); | |
| } | |
| } else { | |
| // Default to Float64 List for other array types | |
| // @ts-ignore | |
| columns[columnName] = vectorFromArray( | |
| values, | |
| new arrow.List(new arrow.Field("item", new arrow.Float64())) | |
| ); | |
| } | |
| } else { | |
| // For non-array columns, use regular vectorFromArray | |
| // @ts-ignore | |
| columns[columnName] = vectorFromArray(values); | |
| } | |
| }); | |
| // Create the table with all columns | |
| const table = arrow.tableFromArrays(columns); | |
| // Initialize the WASM module | |
| const wasmUrl = | |
| "https://cdn.jsdelivr.net/npm/[email protected]/esm/parquet_wasm_bg.wasm"; | |
| const initWasm = parquet.default; | |
| await initWasm(wasmUrl); | |
| // Convert Arrow table to Parquet WASM table | |
| const wasmTable = parquet.Table.fromIPCStream( | |
| arrow.tableToIPC(table, "stream") | |
| ); | |
| // Set compression properties | |
| const writerProperties = new parquet.WriterPropertiesBuilder() | |
| .setCompression(parquet.Compression.UNCOMPRESSED) | |
| .build(); | |
| // Write the Parquet file | |
| return parquet.writeParquet(wasmTable, writerProperties); | |
| } | |
| generateREADME(metaInfo: string) { | |
| return generateREADME(metaInfo); | |
| } | |
| /** | |
| * Creates an array of path and blob content objects for the LeRobot dataset | |
| * | |
| * @returns An array of {path, content} objects representing the dataset files | |
| * @private | |
| */ | |
| async _exportForLeRobotBlobs() { | |
| const teleoperatorDataJson = (await this.exportEpisodes("json")) as any[]; | |
| const parquetEpisodeDataFiles = await this._exportEpisodesToBlob( | |
| teleoperatorDataJson | |
| ); | |
| const videoBlobs = await this.exportMediaData(); | |
| const metadata = await this.generateMetadata(teleoperatorDataJson); | |
| const statistics = await this.getStatistics(teleoperatorDataJson); | |
| const tasksParquet = await this.createTasksParquet(); | |
| const episodesParquet = await this.getEpisodeStatistics( | |
| teleoperatorDataJson | |
| ); | |
| const readme = this.generateREADME(JSON.stringify(metadata)); | |
| // Create the blob array with proper paths | |
| const blobArray = [ | |
| ...parquetEpisodeDataFiles, | |
| { | |
| path: "meta/info.json", | |
| content: new Blob([JSON.stringify(metadata, null, 2)], { | |
| type: "application/json", | |
| }), | |
| }, | |
| { | |
| path: "meta/stats.json", | |
| content: new Blob([JSON.stringify(statistics, null, 2)], { | |
| type: "application/json", | |
| }), | |
| }, | |
| { | |
| path: "meta/tasks.parquet", | |
| content: new Blob([ | |
| LeRobotDatasetRecorder.toArrayBuffer(tasksParquet as Uint8Array), | |
| ]), | |
| }, | |
| { | |
| path: "meta/episodes/chunk-000/file-000.parquet", | |
| content: new Blob([ | |
| LeRobotDatasetRecorder.toArrayBuffer(episodesParquet as Uint8Array), | |
| ]), | |
| }, | |
| { | |
| path: "README.md", | |
| content: new Blob([readme], { type: "text/markdown" }), | |
| }, | |
| ]; | |
| // Add video blobs with proper paths | |
| for (const [key, blob] of Object.entries(videoBlobs)) { | |
| blobArray.push({ | |
| path: `videos/chunk-000/observation.images.${key}/episode_000000.mp4`, | |
| content: blob, | |
| }); | |
| } | |
| return blobArray; | |
| } | |
| /** | |
| * Creates a ZIP file from the dataset blobs | |
| * | |
| * @returns A Blob containing the ZIP file | |
| * @private | |
| */ | |
| async _exportForLeRobotZip() { | |
| const blobArray = await this._exportForLeRobotBlobs(); | |
| const zip = new JSZip(); | |
| // Add all blobs to the zip with their paths | |
| for (const item of blobArray) { | |
| // Split the path to handle directories | |
| const pathParts = item.path.split("/"); | |
| const fileName = pathParts.pop() || ""; | |
| let currentFolder = zip; | |
| // Create nested folders as needed | |
| if (pathParts.length > 0) { | |
| for (const part of pathParts) { | |
| currentFolder = currentFolder.folder(part) || currentFolder; | |
| } | |
| } | |
| // Add file to the current folder | |
| currentFolder.file(fileName, item.content); | |
| } | |
| // Generate the zip file | |
| return await zip.generateAsync({ type: "blob" }); | |
| } | |
| /** | |
| * Uploads the LeRobot dataset to Hugging Face | |
| * | |
| * @param username Hugging Face username | |
| * @param repoName Repository name for the dataset | |
| * @param accessToken Hugging Face access token | |
| * @returns The LeRobotHFUploader instance used for upload | |
| */ | |
| async _exportForLeRobotHuggingface( | |
| username: string, | |
| repoName: string, | |
| accessToken: string | |
| ) { | |
| // Create the blobs array for upload | |
| const blobArray = await this._exportForLeRobotBlobs(); | |
| // Create the uploader | |
| const uploader = new LeRobotHFUploader(username, repoName); | |
| // Convert blobs to File objects for HF uploader | |
| const files = blobArray.map((item) => { | |
| return { | |
| path: item.path, | |
| content: item.content, | |
| }; | |
| }); | |
| // Generate a unique reference ID for tracking the upload | |
| const referenceId = `lerobot-upload-${Date.now()}`; | |
| try { | |
| // Start the upload process | |
| uploader.createRepoAndUploadFiles(files, accessToken, referenceId); | |
| console.log(`Successfully uploaded dataset to ${username}/${repoName}`); | |
| return uploader; | |
| } catch (error) { | |
| console.error("Error uploading to Hugging Face:", error); | |
| throw error; | |
| } | |
| } | |
| /** | |
| * Uploads the LeRobot dataset to Amazon S3 | |
| * | |
| * @param bucketName S3 bucket name | |
| * @param accessKeyId AWS access key ID | |
| * @param secretAccessKey AWS secret access key | |
| * @param region AWS region (default: us-east-1) | |
| * @param prefix Optional prefix (folder) to upload files to within the bucket | |
| * @returns The LeRobotS3Uploader instance used for upload | |
| */ | |
| async _exportForLeRobotS3( | |
| bucketName: string, | |
| accessKeyId: string, | |
| secretAccessKey: string, | |
| region: string = "us-east-1", | |
| prefix: string = "" | |
| ) { | |
| // Create the blobs array for upload | |
| const blobArray = await this._exportForLeRobotBlobs(); | |
| // Create the uploader | |
| const uploader = new LeRobotS3Uploader(bucketName, region); | |
| // Convert blobs to File objects for S3 uploader | |
| const files = blobArray.map((item) => { | |
| return { | |
| path: item.path, | |
| content: item.content, | |
| }; | |
| }); | |
| // Generate a unique reference ID for tracking the upload | |
| const referenceId = `lerobot-s3-upload-${Date.now()}`; | |
| try { | |
| // Start the upload process | |
| uploader.checkBucketAndUploadFiles( | |
| files, | |
| accessKeyId, | |
| secretAccessKey, | |
| prefix, | |
| referenceId | |
| ); | |
| console.log(`Successfully uploaded dataset to S3 bucket: ${bucketName}`); | |
| return uploader; | |
| } catch (error) { | |
| console.error("Error uploading to S3:", error); | |
| throw error; | |
| } | |
| } | |
| /** | |
| * Exports the LeRobot dataset in various formats | |
| * | |
| * @param format The export format - 'blobs', 'zip', 'zip-download', 'huggingface', or 's3' | |
| * @param options Additional options for specific formats | |
| * @param options.username Hugging Face username (if not provided for "huggingface" format, it will use the default username) | |
| * @param options.repoName Hugging Face repository name (required for 'huggingface' format) | |
| * @param options.accessToken Hugging Face access token (required for 'huggingface' format) | |
| * @param options.bucketName S3 bucket name (required for 's3' format) | |
| * @param options.accessKeyId AWS access key ID (required for 's3' format) | |
| * @param options.secretAccessKey AWS secret access key (required for 's3' format) | |
| * @param options.region AWS region (optional for 's3' format, default: us-east-1) | |
| * @param options.prefix S3 prefix/folder (optional for 's3' format) | |
| * @returns The exported data in the requested format or the uploader instance for 'huggingface'/'s3' formats | |
| */ | |
| async exportForLeRobot( | |
| format: | |
| | "blobs" | |
| | "zip" | |
| | "zip-download" | |
| | "huggingface" | |
| | "s3" = "zip-download", | |
| options?: { | |
| username?: string; | |
| repoName?: string; | |
| accessToken?: string; | |
| bucketName?: string; | |
| accessKeyId?: string; | |
| secretAccessKey?: string; | |
| region?: string; | |
| prefix?: string; | |
| } | |
| ) { | |
| switch (format) { | |
| case "blobs": | |
| return this._exportForLeRobotBlobs(); | |
| case "zip": | |
| return this._exportForLeRobotZip(); | |
| case "huggingface": | |
| // Validate required options for Hugging Face upload | |
| if (!options || !options.repoName || !options.accessToken) { | |
| throw new Error( | |
| "Hugging Face upload requires repoName, and accessToken options" | |
| ); | |
| } | |
| if (!options.username) { | |
| const hub = await import("@huggingface/hub"); | |
| const { name: username } = await hub.whoAmI({ | |
| accessToken: options.accessToken, | |
| }); | |
| options.username = username; | |
| } | |
| return this._exportForLeRobotHuggingface( | |
| options.username, | |
| options.repoName, | |
| options.accessToken | |
| ); | |
| case "s3": | |
| // Validate required options for S3 upload | |
| if ( | |
| !options || | |
| !options.bucketName || | |
| !options.accessKeyId || | |
| !options.secretAccessKey | |
| ) { | |
| throw new Error( | |
| "S3 upload requires bucketName, accessKeyId, and secretAccessKey options" | |
| ); | |
| } | |
| return this._exportForLeRobotS3( | |
| options.bucketName, | |
| options.accessKeyId, | |
| options.secretAccessKey, | |
| options.region, | |
| options.prefix | |
| ); | |
| case "zip-download": | |
| default: | |
| // Get the zip blob | |
| const zipContent = await this._exportForLeRobotZip(); | |
| // Create a URL for the zip file | |
| const url = URL.createObjectURL(zipContent); | |
| // Create a download link and trigger the download | |
| const link = document.createElement("a"); | |
| link.href = url; | |
| link.download = `lerobot_dataset_${new Date() | |
| .toISOString() | |
| .replace(/[:.]/g, "-")}.zip`; | |
| document.body.appendChild(link); | |
| link.click(); | |
| // Clean up | |
| setTimeout(() => { | |
| document.body.removeChild(link); | |
| URL.revokeObjectURL(url); | |
| }, 100); | |
| return zipContent; | |
| } | |
| } | |
| } | |