anselp's picture
Update app.py
0e52835 verified
raw
history blame
9.26 kB
import gradio as gr
import json
import os
import random
import datasets
from dipromats_evaluation_v2 import evaluate_results
# CONSTANTS
# Hugging Face datasets
DATASET_GOLD = "NLP-UNED/dipromats2024-t2_leaderboard-gold"
FILE_GOLD = 'gold_test.json'
DATASET_RESULTS = "NLP-UNED/dipromats2024-t2_leaderboard-results"
SPLIT_EN = 'results_en'
SPLIT_ES = 'results_es'
FEATURES_RESULTS = datasets.Features({
"team_name": datasets.Value("string"),
"run_id": datasets.Value("string"),
"description": datasets.Value("string"),
"lenient_f1": datasets.Value("float64"),
"strict_f1": datasets.Value("float64"),
"average_f1": datasets.Value("float64") })
EMPTY_RESULT={"team_name": [], "run_id": [], "description": [], "lenient_f1": [], "strict_f1": [], "average_f1": []}
# Before, you must create the Tokens in HF User Settings to give read and write access only to the datasets
try:
from google.colab import userdata
# Token must be copied and activated in Colab Secrets
HF_TOKEN_GOLD = userdata.get('HF_DIPROMATS2024_T2_GOLD_TOKEN')
HF_TOKEN_RESULTS = userdata.get('HF_DIPROMATS2024_T2_RESULTS_TOKEN')
except:
# Assume running in HF Space
# Tokens must be copied in Secrets under Space Settings
HF_TOKEN_GOLD = os.getenv('HF_DIPROMATS2024_T2_GOLD_TOKEN')
HF_TOKEN_RESULTS = os.getenv('HF_DIPROMATS2024_T2_RESULTS_TOKEN')
# LOAD DATASETS
# Load the Gold Standard data
# FILE_GOLD was uploaded directly through HF web, and the default split is train
dataset_gold = datasets.load_dataset(DATASET_GOLD, split='train', data_files=FILE_GOLD, token=HF_TOKEN_GOLD)
# Load the English dataset or create an empty one instead
try:
dataset_en = datasets.load_dataset(DATASET_RESULTS, split=SPLIT_EN)
except Exception as e:
print(f"Error loading English dataset: {e}. Creating it...")
dataset_en = datasets.Dataset.from_dict(EMPTY_RESULT, features=FEATURES_RESULTS, split=SPLIT_EN)
dataset_en.push_to_hub(DATASET_RESULTS, split=SPLIT_EN, token=HF_TOKEN_RESULTS)
# Load the Spanish dataset or create an empty one instead
try:
dataset_es = datasets.load_dataset(DATASET_RESULTS, split=SPLIT_ES)
except Exception as e:
print(f"Error loading Spanish dataset: {e}. Creating it...")
dataset_es = datasets.Dataset.from_dict(EMPTY_RESULT, features=FEATURES_RESULTS, split=SPLIT_ES)
dataset_es.push_to_hub(DATASET_RESULTS, split=SPLIT_ES, token=HF_TOKEN_RESULTS)
# AUX FUNCTIONS
# Funci贸n para convertir el dataset en tabla
def data_to_table(dataset):
table_data = []
for item in dataset:
table_data.append([item.get("team_name", ""), item.get("run_id", ""),
item.get("lenient_f1", ""), item.get("strict_f1", ""), item.get("average_f1", "")])
return table_data
# Funci贸n para subir los resultados al leaderboard
def update_leaderboard(lang, file_path, email, team_input, run_id, description, lenient_f1, strict_f1, average_f1):
global dataset_en
global dataset_es
if lang == "en":
dataset = dataset_en
else:
dataset = dataset_es
warn = False
if not email:
gr.Warning("Email cannot be blank")
warn=True
if not team_input:
gr.Warning("Team name cannot be blank")
warn=True
if not run_id:
gr.Warning("Run ID cannot be blank")
warn=True
if not file_path:
gr.Warning("File cannot be blank")
warn=True
if not description:
gr.Warning("Description cannot be blank")
warn=True
if warn:
return data_to_table(dataset_en), data_to_table(dataset_es), gr.Tabs(selected=1), gr.Button(visible=False), gr.Column(visible=True), team_input, run_id, description, email, file_path, lenient_f1, strict_f1, average_f1
dataset = dataset.add_item({
"team_name": team_input,
"run_id": run_id,
"description": description,
"lenient_f1": lenient_f1,
"strict_f1": strict_f1,
"average_f1": average_f1
})
# Save change in database
dataset.push_to_hub(DATASET_RESULTS, token=HF_TOKEN_RESULTS)
# Update dataset in memory
if lang == "en":
dataset_en = dataset
else:
dataset_es = dataset
#output: leaderboard_table, tabs, evaluate_button, submission_col, team_input, run_id, description_input, email_input, file_input, lenient_f1, strict_f1, average_f1
return data_to_table(dataset_en), data_to_table(dataset_es), gr.Tabs(selected=0), gr.Button(visible=True), gr.Column(visible=False), "", "", "", "", None, None, None, None
# Funci贸n para procesar el archivo de resultados
def process_file(lang, file_path):
global dataset_gold
if not file_path:
gr.Warning("File cannot be blank")
return gr.Button(visible=True), gr.Row(visible=False), None, None, None
with open(file_path, 'r') as f:
test = json.load(f)
try:
results = evaluate_results(lang, dataset_gold, test)
#print(results)
except Exception as e:
gr.Warning("Invalid JSON file or Incorrect Language")
print(f"Error in function evaluate_results: {e}.")
print(dataset_gold)
return gr.Button(visible=True), gr.Row(visible=False), None, None, None
lenient_f1 = results['lenient']['micro']['scores']['f1-score']
strict_f1 = results['strict']['micro']['scores']['f1-score']
average_f1 = (lenient_f1 + strict_f1) / 2
return gr.Button(visible=False), gr.Row(visible=True), lenient_f1, strict_f1, average_f1
# Main
with gr.Blocks() as leaderboard:
gr.Markdown(
"""
# Dipromats 2024 Task 2 Leaderboard
# Automatic Detection of Narratives from Diplomats of Major Powers
These are the leaderboards for DIPROMATS 2024 Task 2 described in <a href=https://nlp.uned.es/dipromats2024>nlp.uned.es/dipromats2024</a>.
The Gold Standard is not publicly available so LLMs cannot be contamined with them.
However, you can submit your results here and get your system automatically evaluated.
Then you will have the choice to submit your results to the leaderboard.
""")
with gr.Tabs() as tabs:
# Tab English Leaderboard
with gr.TabItem("English Leaderboard", id=0):
gr.Markdown(
"""
# English Leaderboard
""")
leaderboard_table_en = gr.Dataframe(headers=["Team", "Run ID", "Lenient F1", "Strict F1", "Average F1"],
value=data_to_table(dataset_en),
interactive=False)
# Tab Spanish Leaderboard
with gr.TabItem("Spanish Leaderboard", id=2):
gr.Markdown(
"""
# Spanish Leaderboard
""")
leaderboard_table_es = gr.Dataframe(headers=["Team", "Run ID", "Lenient F1", "Strict F1", "Average F1"],
value=data_to_table(dataset_es),
interactive=False)
# Tab Evaluate
with gr.TabItem("Evaluate your results", id=1):
gr.Markdown(
"""
# Upload your results and get evaluated
Then you can decide to submit your results to the leaderboard or not.
Make sure that you upload a file with the json format described in...
""")
with gr.Row():
file_input = gr.File(label="Upload a JSON file", file_types=[".json"], type="filepath", file_count="single")
with gr.Column():
lang = gr.Dropdown(label="Language", choices=["en", "es"], interactive=True)
evaluate_button = gr.Button("Evaluate")
# System results table
with gr.Row(visible=True):
lenient_f1 = gr.Number(label="Lenient F1", interactive=False)
strict_f1 = gr.Number(label="Strict F1", interactive=False)
average_f1 = gr.Number(label="Average F1", interactive=False)
# Submit to leaderboard
with gr.Column(visible=False) as submission_col:
with gr.Row():
with gr.Column():
with gr.Row():
team_input = gr.Textbox(label="Team Name")
run_id = gr.Textbox(label="Run ID")
email_input = gr.Textbox(label="Email (only for submission verification, it won't be shown)")
description_input = gr.Textbox(label="System description", lines=6)
submit_button = gr.Button("Submit to leaderboard")
evaluate_button.click(process_file,
inputs=[lang, file_input],
outputs=[evaluate_button, submission_col,lenient_f1, strict_f1, average_f1])
submit_button.click(update_leaderboard,
inputs=[lang, file_input, email_input, team_input, run_id, description_input, lenient_f1, strict_f1, average_f1],
outputs=[leaderboard_table_en, leaderboard_table_es, tabs, evaluate_button, submission_col, team_input, run_id, description_input, email_input, file_input, lenient_f1, strict_f1, average_f1])
leaderboard.launch()