Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,30 @@
|
|
1 |
-
# prompt: instead of using JSON_FILE in local drive, use the HuggingFace dataset "NLP-UNED/dipromats2024-t2_leaderboard-data"
|
2 |
import gradio as gr
|
3 |
import json
|
4 |
import os
|
5 |
import random
|
6 |
import datasets #load_dataset, save_to_disk, load_from_disk
|
7 |
|
|
|
|
|
|
|
|
|
8 |
# Use the Hugging Face dataset
|
9 |
DATASET_NAME = "NLP-UNED/dipromats2024-t2_leaderboard-data"
|
10 |
-
|
11 |
|
12 |
try:
|
13 |
dataset = datasets.load_dataset(DATASET_NAME)
|
14 |
-
data = dataset['train']
|
15 |
|
16 |
except Exception as e:
|
17 |
print(f"Error loading dataset: {e}")
|
18 |
-
|
|
|
19 |
|
20 |
# Funci贸n para convertir el dataset en tabla
|
21 |
def data_to_table():
|
22 |
-
global
|
23 |
table_data = []
|
24 |
-
for item in
|
25 |
table_data.append([item.get("team_name", ""), item.get("run_id", ""),
|
26 |
item.get("lenient_f1", ""), item.get("strict_f1", ""), item.get("average_f1", "")])
|
27 |
return table_data
|
@@ -29,8 +32,8 @@ def data_to_table():
|
|
29 |
|
30 |
# Funci贸n para subir los resultados al leaderboard
|
31 |
def update_leaderboard(email, team_input, run_id, description, lenient_f1, strict_f1, average_f1):
|
32 |
-
global
|
33 |
-
|
34 |
"email": email,
|
35 |
"team_name": team_input,
|
36 |
"run_id": run_id,
|
@@ -39,7 +42,8 @@ def update_leaderboard(email, team_input, run_id, description, lenient_f1, stric
|
|
39 |
"strict_f1": strict_f1,
|
40 |
"average_f1": average_f1
|
41 |
})
|
42 |
-
|
|
|
43 |
return data_to_table(), gr.Tabs(selected=0), gr.Button(visible=True), gr.Button(visible=False), "", "", "", "", None, None, None, None
|
44 |
|
45 |
|
@@ -140,4 +144,4 @@ with gr.Blocks() as leaderboard:
|
|
140 |
submit_button.click(update_leaderboard,
|
141 |
inputs=[email_input, team_input, run_id, description_input, lenient_f1, strict_f1, average_f1],
|
142 |
outputs=[leaderboard_table, tabs, evaluate_button, submit_button, team_input, run_id, description_input, email_input, file_input,lenient_f1, strict_f1, average_f1])
|
143 |
-
leaderboard.launch(
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import json
|
3 |
import os
|
4 |
import random
|
5 |
import datasets #load_dataset, save_to_disk, load_from_disk
|
6 |
|
7 |
+
from google.colab import userdata
|
8 |
+
|
9 |
+
HF_TOKEN = userdata.get('HF-DIPROMATS2024-T2-LEADERBOARD-TOKEN')
|
10 |
+
|
11 |
# Use the Hugging Face dataset
|
12 |
DATASET_NAME = "NLP-UNED/dipromats2024-t2_leaderboard-data"
|
13 |
+
SPLIT = 'results'
|
14 |
|
15 |
try:
|
16 |
dataset = datasets.load_dataset(DATASET_NAME)
|
|
|
17 |
|
18 |
except Exception as e:
|
19 |
print(f"Error loading dataset: {e}")
|
20 |
+
dataset = datasets.Dataset.from_dict({"email": [], "team_name": [], "run_id": [], "description": [], "lenient_f1": [], "strict_f1": [], "average_f1": []})
|
21 |
+
dataset = datasets.DatasetDict({SPLIT: dataset})
|
22 |
|
23 |
# Funci贸n para convertir el dataset en tabla
|
24 |
def data_to_table():
|
25 |
+
global dataset
|
26 |
table_data = []
|
27 |
+
for item in dataset[SPLIT]:
|
28 |
table_data.append([item.get("team_name", ""), item.get("run_id", ""),
|
29 |
item.get("lenient_f1", ""), item.get("strict_f1", ""), item.get("average_f1", "")])
|
30 |
return table_data
|
|
|
32 |
|
33 |
# Funci贸n para subir los resultados al leaderboard
|
34 |
def update_leaderboard(email, team_input, run_id, description, lenient_f1, strict_f1, average_f1):
|
35 |
+
global datataset
|
36 |
+
new_data = dataset[SPLIT].add_item({
|
37 |
"email": email,
|
38 |
"team_name": team_input,
|
39 |
"run_id": run_id,
|
|
|
42 |
"strict_f1": strict_f1,
|
43 |
"average_f1": average_f1
|
44 |
})
|
45 |
+
dataset[SPLIT] = new_data
|
46 |
+
new_data.push_to_hub(DATASET_NAME, split=SPLIT, token=HF_TOKEN)
|
47 |
return data_to_table(), gr.Tabs(selected=0), gr.Button(visible=True), gr.Button(visible=False), "", "", "", "", None, None, None, None
|
48 |
|
49 |
|
|
|
144 |
submit_button.click(update_leaderboard,
|
145 |
inputs=[email_input, team_input, run_id, description_input, lenient_f1, strict_f1, average_f1],
|
146 |
outputs=[leaderboard_table, tabs, evaluate_button, submit_button, team_input, run_id, description_input, email_input, file_input,lenient_f1, strict_f1, average_f1])
|
147 |
+
leaderboard.launch()
|