anselp commited on
Commit
a2032b5
·
verified ·
1 Parent(s): 7d62703

Delete dipromats_evaluation.py

Browse files
Files changed (1) hide show
  1. dipromats_evaluation.py +0 -298
dipromats_evaluation.py DELETED
@@ -1,298 +0,0 @@
1
- import pandas as pd
2
- import json
3
- import numpy as np
4
- import warnings
5
- # Suprimir SettingWithCopyWarning
6
- warnings.simplefilter(action='ignore', category=pd.errors.SettingWithCopyWarning)
7
-
8
-
9
- gold_json_path='./gold_test.json'
10
-
11
-
12
-
13
-
14
-
15
- import pandas as pd
16
- import json
17
- import numpy as np
18
- import warnings
19
- # Suprimir SettingWithCopyWarning
20
- warnings.simplefilter(action='ignore', category=pd.errors.SettingWithCopyWarning)
21
-
22
- import json
23
-
24
- # Leer un archivo JSON
25
-
26
- gold_json_path='./gold_test.json'
27
- def evaluate_results(lang, file_path):
28
- def load_gold():
29
- df=pd.read_json(gold_json_path)
30
- return df
31
- def load_to_be_evaluated_set(file_path):
32
- with open(file_path, 'r') as file:
33
- data=json.load(file)
34
- dft=pd.DataFrame(data)
35
- return dft
36
- def normalize_labels(df):
37
- # Define a function that checks if each narrative is present and assigns "yes" or "no"
38
- def convert_narratives(row):
39
- country_code = row['country'][:2].upper() # Get the country code ('RU', 'CH', etc.)
40
- narratives = row['narratives'] # List of narratives for that row
41
-
42
- # For each N1 to N6, check if it appears in the list of narratives
43
- for i in range(1, 7):
44
- narrative_code = f"{country_code}{i}"
45
- row[f"N{i}"] = 'yes' if narrative_code in narratives else 'no'
46
- return row
47
- # Apply the function to each row of the DataFrame
48
- data = df.apply(convert_narratives, axis=1)
49
- # Drop the original 'narratives' column if no longer needed
50
- data.drop(columns=['narratives', 'tweet_id'], inplace=True)
51
- return data
52
- def get_gold_lists_for_evaluation(gold_list, test_list):
53
- gold_strict=[]
54
- gold_lenient=[]
55
- for i in range(0,6):
56
- g=gold_list[i]
57
- t=test_list[i]
58
- g = 1 if g == 'yes' else 2 if g == 'no' else g
59
- t = 1 if t == 'yes' else 2 if t == 'no' else t
60
- if g==t:
61
- gold_strict.append(g)
62
- gold_lenient.append(g)
63
- elif g!=t:
64
- if g in [2, 1]:
65
- gold_strict.append(g)
66
- gold_lenient.append(g)
67
- else:
68
- gold_strict.append(2)
69
- gold_lenient.append(t)
70
- return gold_strict, gold_lenient
71
- def gen_dic(lang):
72
- narratives_list=['CH1', 'CH2', 'CH3', 'CH4', 'CH5', 'CH6', 'CH_micro', 'RU1', 'RU2', 'RU3', 'RU4', 'RU5', 'RU6', 'RU_micro', 'EU1', 'EU2', 'EU3', 'EU4', 'EU5', 'EU6', 'EU_micro', 'US1', 'US2', 'US3', 'US4', 'US5', 'US6', 'US_micro']
73
- countries_dic={'China':'CH', 'Russia':'RU', 'EU':'EU', 'USA':'US'}
74
- dic = {}
75
- dic[lang] = {}
76
- for ev in ['strict', 'lenient']:
77
- if ev not in dic[lang]:
78
- dic[lang][ev] = {}
79
- for narr in narratives_list:
80
- dic[lang][ev][narr] = {'scores': {'precision': 0., 'recall': 0., 'f1-score': 0.}, 'raw_data': []}
81
-
82
- for code in countries_dic.values():
83
- dic[lang][ev][f'{code}_micro'] = {'scores': {'precision': 0., 'recall': 0., 'f1-score': 0}, 'raw_data': []}
84
-
85
- dic[lang][ev]['micro'] = {'scores': {'precision': 0., 'recall': 0., 'f1-score': 0}, 'raw_data': []}
86
- return dic
87
- def convert_labels(values):
88
- return np.array([
89
- [1 if v == 'yes' else 2 if v == 'no' else 3 for v in row]
90
- for row in values
91
- ])
92
- def convert_floats(dic):
93
- for key, value in dic.items():
94
- if isinstance(value, np.float64):
95
- dic[key] = float(value)
96
- elif isinstance(value, dict): # If the value is another dictionary, apply recursion
97
- convert_floats(value)
98
- elif isinstance(value, list): # If the value is a list, convert individual elements
99
- dic[key] = [float(v) if isinstance(v, np.float64) else v for v in value]
100
- dic=gen_dic(lang)
101
- countries_dic={'China':'CH', 'Russia':'RU', 'EU':'EU', 'USA':'US'}
102
- cols=[f'N{i}' for i in range(1,7)]
103
- df_gold=load_gold()
104
- df_gold.drop_duplicates(subset=['id', 'lang'], keep='last', inplace=True)
105
- df=df_gold[df_gold['lang']==lang]
106
- df.reset_index(inplace=True, drop=True)
107
- df_test=load_to_be_evaluated_set(file_path)
108
- df_test=normalize_labels(df_test)
109
- df_test.drop_duplicates(subset=['id', 'language'], keep='last', inplace=True)
110
- df_test.reset_index(inplace=True, drop=True)
111
-
112
-
113
- df_strict=df.copy()
114
- df_lenient=df.copy()
115
- for i in range(len(df)):
116
- lang=df['lang'].iloc[i]
117
- id=df['id'].iloc[i]
118
- gold_values=df[cols].iloc[i].values
119
- dft=df_test[(df_test['language']==lang) & (df_test['id']==id)]
120
-
121
- test_values=dft[cols].iloc[0].values
122
- df_strict.loc[i, cols], df_lenient.loc[i, cols]=get_gold_lists_for_evaluation(gold_values, test_values)
123
-
124
- countries=['China', 'Russia', 'EU', 'USA']
125
-
126
- df_lang=df[(df['lang']==lang)]
127
- df_test_lang=df_test[(df_test['language']==lang)]
128
- df_strict_lang=df_strict[df_strict['lang']==lang]
129
- df_lenient_lang=df_lenient[df_lenient['lang']==lang]
130
- #F1 per narrative
131
- for country in countries:
132
- df_dup_t=df[(df['country']==country) & (df['lang']==lang)]
133
- df_strict_t=df_strict_lang[df_strict_lang['country']==country]
134
- df_lenient_t=df_lenient_lang[df_lenient_lang['country']==country]
135
- dft=df_test_lang[(df_test_lang['country']==country)]
136
- real_strict=[]
137
- real_lenient=[]
138
- real=[]
139
- pred=[]
140
- for i in range(len(df_strict_t)):
141
- id=df_strict_t['id'].iloc[i]
142
- dft2=dft[dft['id']==id]
143
- if len(dft2)!=0:
144
- real_strict.append(df_strict_t[cols].iloc[i].values)
145
- real_lenient.append(df_lenient_t[cols].iloc[i].values)
146
- pred.append(dft2[cols].iloc[0].values)
147
- real.append(df_dup_t[df_dup_t['id']==id][cols].iloc[0].values)
148
- real_strict=np.array(real_strict)
149
- real_lenient=np.array(real_lenient)
150
-
151
- real = convert_labels(real)
152
- pred = convert_labels(pred)
153
-
154
- for i in range(0, 6):
155
- raw_matrix = np.zeros((2, 3), dtype=int) # 2 filas (pred), 3 columnas (real)
156
- pred_options = [1, 2] # 1 -> 'yes', 2 -> 'no'
157
- real_options = [1, 3, 2] # 1
158
- p=pred[:,i]
159
- r=real[:,i]
160
- for p, r in zip(p, r):
161
- pred_index = pred_options.index(p)
162
- real_index = real_options.index(r)
163
- raw_matrix[pred_index, real_index] += 1
164
- tp=raw_matrix[0,0]
165
- yl=raw_matrix[0,1]
166
- fp=raw_matrix[0,2]
167
- fn=raw_matrix[1,0]
168
- nl=raw_matrix[1,1]
169
- tn=raw_matrix[1,2]
170
- dic[lang]['lenient'][f'{countries_dic[country]}{i+1}']['raw_data']=raw_matrix.tolist()
171
- precision=(tp+yl)/(tp+yl+fp) if (tp+yl+fp)!=0 else 0
172
- recall=(tp+yl)/(tp+fn+yl) if (tp+fn+yl)!=0 else 0
173
- dic[lang]['lenient'][f'{countries_dic[country]}{i+1}']['scores']['precision']=precision
174
- dic[lang]['lenient'][f'{countries_dic[country]}{i+1}']['scores']['recall']=recall
175
- dic[lang]['lenient'][f'{countries_dic[country]}{i+1}']['scores']['f1-score']=(2*precision*recall)/(precision+recall) if (precision+recall)!=0 else 0
176
- dic[lang]['strict'][f'{countries_dic[country]}{i+1}']['raw_data']=raw_matrix.tolist()
177
- precision=tp/(tp+fp+yl) if (tp+fp+yl)!=0 else 0
178
- recall=tp/(tp+fn) if (tp+fn)!=0 else 0
179
- dic[lang]['strict'][f'{countries_dic[country]}{i+1}']['scores']['precision']=precision
180
- dic[lang]['strict'][f'{countries_dic[country]}{i+1}']['scores']['recall']=recall
181
- dic[lang]['strict'][f'{countries_dic[country]}{i+1}']['scores']['f1-score']=(2*precision*recall)/(precision+recall) if (precision+recall)!=0 else 0
182
-
183
- #F1 Micro
184
- real_strict=[]
185
- real_lenient=[]
186
- pred=[]
187
- not_match=[]
188
- real=[]
189
- for i in range(len(df_lang)):
190
- id=df_lang['id'].iloc[i]
191
- dft=df_test_lang[df_test_lang['id']==id][cols]
192
- if len(dft)!=0:
193
- real_strict.extend(df_strict_lang[cols].iloc[i].values)
194
- real_lenient.extend(df_strict_lang[cols].iloc[i].values)
195
- pred.extend(df_test_lang[df_test_lang['id']==id][cols].iloc[0].values)
196
- real.extend(df_lang[df_lang['id']==id][cols].iloc[0].values)
197
- else:
198
- not_match.append(id)
199
-
200
- real = convert_labels([real])[0]
201
- pred = convert_labels([pred])[0]
202
- raw_matrix=np.zeros((2,3), dtype=int)
203
- pred_options = [1, 2] # 1 -> 'yes', 2 -> 'no'
204
- real_options = [1, 3, 2] # 1
205
- raw_matrix = np.zeros((2, 3), dtype=int)
206
- for p, r in zip(pred, real):
207
- pred_index = pred_options.index(p)
208
- real_index = real_options.index(r)
209
- raw_matrix[pred_index, real_index] += 1
210
- tp=raw_matrix[0,0]
211
- yl=raw_matrix[0,1]
212
- fp=raw_matrix[0,2]
213
- fn=raw_matrix[1,0]
214
- nl=raw_matrix[1,1]
215
- tn=raw_matrix[1,2]
216
- dic[lang]['lenient']['micro']['raw_data']=raw_matrix.tolist()
217
- precision=(tp+yl)/(tp+yl+fp) if (tp+yl+fp)!=0 else 0
218
- recall=(tp+yl)/(tp+fn+yl) if (tp+fn+yl)!=0 else 0
219
- dic[lang]['lenient']['micro']['scores']['precision']=precision
220
- dic[lang]['lenient']['micro']['scores']['recall']=recall
221
- dic[lang]['lenient']['micro']['scores']['f1-score']=(2*precision*recall)/(precision+recall) if (precision+recall)!=0 else 0
222
- dic[lang]['strict']['micro']['raw_data']=raw_matrix.tolist()
223
- precision=tp/(tp+fp+yl) if (tp+yl+fp)!=0 else 0
224
- recall=tp/(tp+fn) if (tp+fn)!=0 else 0
225
- dic[lang]['strict']['micro']['scores']['precision']=precision
226
- dic[lang]['strict']['micro']['scores']['recall']=recall
227
- dic[lang]['strict']['micro']['scores']['f1-score']=(2*precision*recall)/(precision+recall) if (precision+recall)!=0 else 0
228
-
229
- #Micro-Countries
230
- for country in countries_dic.values():
231
- raw_matrix = np.sum([np.array(dic[f'{lang}']['strict'][f'{country}{i}']['raw_data']) for i in range(1, 7)], axis=0)
232
- tp=raw_matrix[0,0]
233
- yl=raw_matrix[0,1]
234
- fp=raw_matrix[0,2]
235
- fn=raw_matrix[1,0]
236
- nl=raw_matrix[1,1]
237
- tn=raw_matrix[1,2]
238
- precision=(tp+yl)/(tp+yl+fp) if (tp+yl+fp)!=0 else 0
239
- recall=(tp+yl)/(tp+fn+yl) if (tp+fn+yl)!=0 else 0
240
- dic[lang]['lenient'][f'{country}_micro']['scores']['precision']=precision
241
- dic[lang]['lenient'][f'{country}_micro']['scores']['recall']=recall
242
- dic[lang]['lenient'][f'{country}_micro']['scores']['f1-score']=(2*precision*recall)/(precision+recall) if (precision+recall)!=0 else 0
243
- dic[lang]['lenient'][f'{country}_micro']['raw_data']=raw_matrix.tolist()
244
- precision=tp/(tp+fp+yl) if (tp+yl+fp)!=0 else 0
245
- recall=tp/(tp+fn) if (tp+fn)!=0 else 0
246
- dic[lang]['strict'][f'{country}_micro']['scores']['precision']=precision
247
- dic[lang]['strict'][f'{country}_micro']['scores']['recall']=recall
248
- dic[lang]['strict'][f'{country}_micro']['scores']['f1-score']=(2*precision*recall)/(precision+recall) if (precision+recall)!=0 else 0
249
- dic[lang]['strict'][f'{country}_micro']['raw_data']=raw_matrix.tolist()
250
-
251
- convert_floats(dic[lang])
252
-
253
- return dic[lang]
254
-
255
-
256
-
257
-
258
-
259
- """
260
- strict
261
- narrative_country (e.g. CH1)
262
- scores
263
- precision
264
- recall
265
- f1-score
266
- raw_data
267
- country_micro (e.g. CH_micro)
268
- scores
269
- precision
270
- recall
271
- f1-score
272
- raw_data
273
- micro (global micro)
274
- scores
275
- precision
276
- recall
277
- f1-score
278
- raw_data
279
-
280
- lenient
281
- narrative_country (e.g. CH1)
282
- scores
283
- precision
284
- recall
285
- f1-score
286
- raw_data
287
- country_micro (e.g. CH_micro)
288
- scores
289
- precision
290
- recall
291
- f1-score
292
- raw_data
293
- micro (global micro)
294
- scores
295
- precision
296
- recall
297
- f1-score
298
- raw_data"""