import gradio as gr import json import os import random import datasets from dipromats_evaluation_v2 import evaluate_results # CONSTANTS # Hugging Face datasets DATASET_GOLD = "NLP-UNED/dipromats2024-t2_leaderboard-gold" FILE_GOLD = 'gold_test.json' DATASET_RESULTS = "NLP-UNED/dipromats2024-t2_leaderboard-results" SPLIT_EN = 'results_en' SPLIT_ES = 'results_es' FEATURES_RESULTS = datasets.Features({ "team_name": datasets.Value("string"), "run_id": datasets.Value("string"), "description": datasets.Value("string"), "lenient_f1": datasets.Value("float64"), "strict_f1": datasets.Value("float64"), "average_f1": datasets.Value("float64") }) EMPTY_RESULT={"team_name": [], "run_id": [], "description": [], "lenient_f1": [], "strict_f1": [], "average_f1": []} # Before, you must create the Tokens in HF User Settings to give read and write access only to the datasets try: from google.colab import userdata # Token must be copied and activated in Colab Secrets HF_TOKEN_GOLD = userdata.get('HF_DIPROMATS2024_T2_GOLD_TOKEN') HF_TOKEN_RESULTS = userdata.get('HF_DIPROMATS2024_T2_RESULTS_TOKEN') except: # Assume running in HF Space # Tokens must be copied in Secrets under Space Settings HF_TOKEN_GOLD = os.getenv('HF_DIPROMATS2024_T2_GOLD_TOKEN') HF_TOKEN_RESULTS = os.getenv('HF_DIPROMATS2024_T2_RESULTS_TOKEN') # LOAD DATASETS # Load the Gold Standard data # FILE_GOLD was uploaded directly through HF web, and the default split is train dataset_gold = datasets.load_dataset(DATASET_GOLD, split='train', data_files=FILE_GOLD, token=HF_TOKEN_GOLD) # Load the English dataset or create an empty one instead try: dataset_en = datasets.load_dataset(DATASET_RESULTS, split=SPLIT_EN) except Exception as e: print(f"Error loading English dataset: {e}. Creating it...") dataset_en = datasets.Dataset.from_dict(EMPTY_RESULT, features=FEATURES_RESULTS, split=SPLIT_EN) dataset_en.push_to_hub(DATASET_RESULTS, split=SPLIT_EN, token=HF_TOKEN_RESULTS) # Load the Spanish dataset or create an empty one instead try: dataset_es = datasets.load_dataset(DATASET_RESULTS, split=SPLIT_ES) except Exception as e: print(f"Error loading Spanish dataset: {e}. Creating it...") dataset_es = datasets.Dataset.from_dict(EMPTY_RESULT, features=FEATURES_RESULTS, split=SPLIT_ES) dataset_es.push_to_hub(DATASET_RESULTS, split=SPLIT_ES, token=HF_TOKEN_RESULTS) # AUX FUNCTIONS # Función para convertir el dataset en tabla def data_to_table(dataset): table_data = [] for item in dataset: table_data.append([item.get("team_name", ""), item.get("run_id", ""), item.get("lenient_f1", ""), item.get("strict_f1", ""), item.get("average_f1", ""), item.get("description", "")]) return table_data # Función para subir los resultados al leaderboard def update_leaderboard(lang, file_path, email, team_input, run_id, description, lenient_f1, strict_f1, average_f1): global dataset_en global dataset_es if lang == "en": dataset = dataset_en else: dataset = dataset_es warn = False if not email: gr.Warning("Email cannot be blank") warn=True if not team_input: gr.Warning("Team name cannot be blank") warn=True if not run_id: gr.Warning("Run ID cannot be blank") warn=True if not file_path: gr.Warning("File cannot be blank") warn=True if not description: gr.Warning("Description cannot be blank") warn=True if warn: return data_to_table(dataset_en), data_to_table(dataset_es), gr.Tabs(selected=1), gr.Button(visible=False), gr.Column(visible=True), team_input, run_id, description, email, file_path, lenient_f1, strict_f1, average_f1 dataset = dataset.add_item({ "team_name": team_input, "run_id": run_id, "description": description, "lenient_f1": lenient_f1, "strict_f1": strict_f1, "average_f1": average_f1 }) # Save change in database dataset.push_to_hub(DATASET_RESULTS, token=HF_TOKEN_RESULTS) # Update dataset in memory if lang == "en": dataset_en = dataset else: dataset_es = dataset #output: leaderboard_table, tabs, evaluate_button, submission_col, team_input, run_id, description_input, email_input, file_input, lenient_f1, strict_f1, average_f1 return data_to_table(dataset_en), data_to_table(dataset_es), gr.Tabs(selected=0), gr.Button(visible=True), gr.Column(visible=False), "", "", "", "", None, None, None, None # Función para procesar el archivo de resultados def process_file(lang, file_path): global dataset_gold if not file_path: gr.Warning("File cannot be blank") return gr.Button(visible=True), gr.Row(visible=False), None, None, None with open(file_path, 'r') as f: test = json.load(f) try: results = evaluate_results(lang, dataset_gold, test) #print(results) except Exception as e: gr.Warning("Invalid JSON file or Incorrect Language") print(f"Error in function evaluate_results: {e}.") print(dataset_gold) return gr.Button(visible=True), gr.Row(visible=False), None, None, None lenient_f1 = results['lenient']['micro']['scores']['f1-score'] strict_f1 = results['strict']['micro']['scores']['f1-score'] average_f1 = (lenient_f1 + strict_f1) / 2 return gr.Button(visible=False), gr.Row(visible=True), lenient_f1, strict_f1, average_f1 # Main with gr.Blocks() as leaderboard: gr.Markdown( """ # Dipromats 2024 Task 2 Leaderboard # Automatic Detection of Narratives from Diplomats of Major Powers These are the leaderboards for DIPROMATS 2024 Task 2 described in nlp.uned.es/dipromats2024. The Gold Standard is not publicly available so LLMs cannot be contamined with them. However, the datasets are available at https://nlp.uned.es/hamison-project/results.html You can submit your results here and get your system automatically evaluated. Then you will have the choice to submit your results to the leaderboard. The HuggingFace datasets of results displayed here are: - https://huggingface.co/datasets/NLP-UNED/dipromats2024-t2_leaderboard-results/viewer/default/results_en - https://huggingface.co/datasets/NLP-UNED/dipromats2024-t2_leaderboard-results/viewer/default/results_es """) with gr.Tabs() as tabs: # Tab English Leaderboard with gr.TabItem("English Leaderboard", id=0): gr.Markdown( """ # English Leaderboard """) leaderboard_table_en = gr.Dataframe(headers=["Team", "Run ID", "Lenient F1", "Strict F1", "Average F1", "System Description"], value=data_to_table(dataset_en), interactive=False) # Tab Spanish Leaderboard with gr.TabItem("Spanish Leaderboard", id=2): gr.Markdown( """ # Spanish Leaderboard """) leaderboard_table_es = gr.Dataframe(headers=["Team", "Run ID", "Lenient F1", "Strict F1", "Average F1", "System Description"], value=data_to_table(dataset_es), interactive=False) # Tab Evaluate with gr.TabItem("Evaluate your results", id=1): gr.Markdown( """ # Upload your results and get evaluated Then you can decide to submit your results to the leaderboard or not. Make sure that you upload a file with the json format described in... """) with gr.Row(): file_input = gr.File(label="Upload a JSON file", file_types=[".json"], type="filepath", file_count="single") with gr.Column(): lang = gr.Dropdown(label="Language", choices=["en", "es"], interactive=True) evaluate_button = gr.Button("Evaluate") # System results table with gr.Row(visible=True): lenient_f1 = gr.Number(label="Lenient F1", interactive=False) strict_f1 = gr.Number(label="Strict F1", interactive=False) average_f1 = gr.Number(label="Average F1", interactive=False) # Submit to leaderboard with gr.Column(visible=False) as submission_col: with gr.Row(): with gr.Column(): with gr.Row(): team_input = gr.Textbox(label="Team Name") run_id = gr.Textbox(label="Run ID") email_input = gr.Textbox(label="Email (only for submission verification, it won't be shown)") description_input = gr.Textbox(label="System description", lines=6) submit_button = gr.Button("Submit to leaderboard") evaluate_button.click(process_file, inputs=[lang, file_input], outputs=[evaluate_button, submission_col,lenient_f1, strict_f1, average_f1]) submit_button.click(update_leaderboard, inputs=[lang, file_input, email_input, team_input, run_id, description_input, lenient_f1, strict_f1, average_f1], outputs=[leaderboard_table_en, leaderboard_table_es, tabs, evaluate_button, submission_col, team_input, run_id, description_input, email_input, file_input, lenient_f1, strict_f1, average_f1]) leaderboard.launch()