hassamniaz7 commited on
Commit
2e3f138
·
verified ·
1 Parent(s): 1ea80cb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -8
app.py CHANGED
@@ -38,19 +38,31 @@ model = ORTModelForSequenceClassification.from_pretrained(model_id)
38
  tokenizer = AutoTokenizer.from_pretrained(model_id)
39
 
40
  # Set top_k=3 to get the top 3 results
41
- pipe = pipeline(task="text-classification", model=model, tokenizer=tokenizer, top_k=3)
 
42
 
43
  def classify_text(text):
44
- results = pipe(text)
45
- output = ""
46
 
47
- # Loop through up to 3 results
48
- for i, result in enumerate(results[:3]):
49
- # Each result should be a dictionary, so access it with ['label'] and ['score']
50
- output += f"Label {i+1}: {result['label']}, Score: {result['score']:.4f}\n"
51
 
 
 
 
 
 
 
 
 
 
 
 
52
  return output
53
 
 
54
  gr.Interface(
55
  fn=classify_text,
56
  title="Sentiment Classifier",
@@ -66,4 +78,4 @@ gr.Interface(
66
  ["I am deeply disappointed in your bad performance in last league match loss, and quite disappointed, sad because of it."],
67
  ["I am very happy with your excellent performance!"]
68
  ]
69
- ).launch()
 
38
  tokenizer = AutoTokenizer.from_pretrained(model_id)
39
 
40
  # Set top_k=3 to get the top 3 results
41
+ # Define the pipeline
42
+ pipe = pipeline(task="text-classification", model=model, tokenizer=tokenizer)
43
 
44
  def classify_text(text):
45
+ start_time = time.time()
 
46
 
47
+ # Get results with all scores returned
48
+ results = pipe(text, return_all_scores=True)
49
+
50
+ end_time = time.time()
51
 
52
+ output = f"Sentence: {text}\n"
53
+
54
+ # Sort results by score in descending order
55
+ sorted_results = sorted(results[0], key=lambda x: x['score'], reverse=True)
56
+
57
+ # Print the top 3 highest-scoring labels and scores
58
+ for i, result in enumerate(sorted_results[:3]): # Limiting to the top 3 results
59
+ output += f"Label {i+1}: {result['label']}, Score: {result['score']:.4f}\n"
60
+
61
+ output += f"Generation time: {end_time - start_time:.2f} seconds\n"
62
+
63
  return output
64
 
65
+ # Gradio Interface
66
  gr.Interface(
67
  fn=classify_text,
68
  title="Sentiment Classifier",
 
78
  ["I am deeply disappointed in your bad performance in last league match loss, and quite disappointed, sad because of it."],
79
  ["I am very happy with your excellent performance!"]
80
  ]
81
+ ).launch()