Update app.py
Browse files
app.py
CHANGED
@@ -38,19 +38,31 @@ model = ORTModelForSequenceClassification.from_pretrained(model_id)
|
|
38 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
39 |
|
40 |
# Set top_k=3 to get the top 3 results
|
41 |
-
|
|
|
42 |
|
43 |
def classify_text(text):
|
44 |
-
|
45 |
-
output = ""
|
46 |
|
47 |
-
#
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
return output
|
53 |
|
|
|
54 |
gr.Interface(
|
55 |
fn=classify_text,
|
56 |
title="Sentiment Classifier",
|
@@ -66,4 +78,4 @@ gr.Interface(
|
|
66 |
["I am deeply disappointed in your bad performance in last league match loss, and quite disappointed, sad because of it."],
|
67 |
["I am very happy with your excellent performance!"]
|
68 |
]
|
69 |
-
).launch()
|
|
|
38 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
39 |
|
40 |
# Set top_k=3 to get the top 3 results
|
41 |
+
# Define the pipeline
|
42 |
+
pipe = pipeline(task="text-classification", model=model, tokenizer=tokenizer)
|
43 |
|
44 |
def classify_text(text):
|
45 |
+
start_time = time.time()
|
|
|
46 |
|
47 |
+
# Get results with all scores returned
|
48 |
+
results = pipe(text, return_all_scores=True)
|
49 |
+
|
50 |
+
end_time = time.time()
|
51 |
|
52 |
+
output = f"Sentence: {text}\n"
|
53 |
+
|
54 |
+
# Sort results by score in descending order
|
55 |
+
sorted_results = sorted(results[0], key=lambda x: x['score'], reverse=True)
|
56 |
+
|
57 |
+
# Print the top 3 highest-scoring labels and scores
|
58 |
+
for i, result in enumerate(sorted_results[:3]): # Limiting to the top 3 results
|
59 |
+
output += f"Label {i+1}: {result['label']}, Score: {result['score']:.4f}\n"
|
60 |
+
|
61 |
+
output += f"Generation time: {end_time - start_time:.2f} seconds\n"
|
62 |
+
|
63 |
return output
|
64 |
|
65 |
+
# Gradio Interface
|
66 |
gr.Interface(
|
67 |
fn=classify_text,
|
68 |
title="Sentiment Classifier",
|
|
|
78 |
["I am deeply disappointed in your bad performance in last league match loss, and quite disappointed, sad because of it."],
|
79 |
["I am very happy with your excellent performance!"]
|
80 |
]
|
81 |
+
).launch()
|