hassamniaz7 commited on
Commit
7af97a7
·
verified ·
1 Parent(s): 0e04211

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -30
app.py CHANGED
@@ -23,15 +23,9 @@ install_packages()
23
 
24
  import gradio as gr
25
  from huggingface_hub import login
26
- from optimum.onnxruntime import ORTModelForSeq2SeqLM
27
- from transformers import AutoTokenizer, pipeline
28
-
29
- from transformers import AutoTokenizer, pipeline
30
  from optimum.onnxruntime import ORTModelForSequenceClassification
31
- import gradio as gr
32
- # with gr.Blocks(css=".gradio-container {background-color: red}") as demo:# with gr.Blocks(css=".gradio-container {background: url('file=clouds.jpg')}") as demo:# css = """
33
 
34
- # with gr.Blocks(css=css) as demo:# box1 = gr.Textbox(value="Good Job", elem_classes="feedback")# box2 = gr.Textbox(value="Failure", elem_id="warning", elem_classes="feedback")
35
  model_id = "HassamAliCADI/SentimentOnx"
36
  hf_token = os.environ.get("NLP")
37
 
@@ -42,38 +36,24 @@ else:
42
 
43
  model = ORTModelForSequenceClassification.from_pretrained(model_id)
44
  tokenizer = AutoTokenizer.from_pretrained(model_id)
45
- # with gr.Blocks(css=".gradio-container {background-color: red}") as demo:# with gr.Blocks(css=".gradio-container {background: url('file=clouds.jpg')}") as demo:# css = """
46
 
47
- # with gr.Blocks(css=css) as demo:# box1 = gr.Textbox(value="Good Job", elem_classes="feedback")# box2 = gr.Textbox(value="Failure", elem_id="warning", elem_classes="feedback")
48
  pipe = pipeline(task="text-classification", model=model, tokenizer=tokenizer)
49
 
50
  def classify_text(text):
51
- # start_time = time.time()
52
  results = pipe(text)
53
- # end_time = time.time()
54
-
55
- # with gr.Blocks(css=".gradio-container {background-color: red}") as demo:# with gr.Blocks(css=".gradio-container {background: url('file=clouds.jpg')}") as demo:# css = """
56
-
57
- # with gr.Blocks(css=css) as demo:# box1 = gr.Textbox(value="Good Job", elem_classes="feedback")# box2 = gr.Textbox(value="Failure", elem_id="warning", elem_classes="feedback")
58
-
59
-
60
- # #warning {background-color: #FFCCCB}# .feedback textarea {font-size: 24px !important}# """
61
-
62
  output = ""
63
- for result in results:
64
- output += f"Label: {result['label']}, Score: {result['score']:.4f}\n"
65
- # output += f"\nGeneration time: {end_time - start_time:.2f} seconds"
 
 
 
 
 
 
66
  return output
67
 
68
  gr.Interface(
69
-
70
- # with gr.Blocks(css=".gradio-container {background-color: red}") as demo:# with gr.Blocks(css=".gradio-container {background: url('file=clouds.jpg')}") as demo:# css = """
71
-
72
- # with gr.Blocks(css=css) as demo:# box1 = gr.Textbox(value="Good Job", elem_classes="feedback")# box2 = gr.Textbox(value="Failure", elem_id="warning", elem_classes="feedback")
73
-
74
-
75
- # #warning {background-color: #FFCCCB}# .feedback textarea {font-size: 24px !important}# """
76
-
77
  fn=classify_text,
78
  title="Sentiment Classifier",
79
  description="Enter text to classify sentiment",
 
23
 
24
  import gradio as gr
25
  from huggingface_hub import login
 
 
 
 
26
  from optimum.onnxruntime import ORTModelForSequenceClassification
27
+ from transformers import AutoTokenizer, pipeline
 
28
 
 
29
  model_id = "HassamAliCADI/SentimentOnx"
30
  hf_token = os.environ.get("NLP")
31
 
 
36
 
37
  model = ORTModelForSequenceClassification.from_pretrained(model_id)
38
  tokenizer = AutoTokenizer.from_pretrained(model_id)
 
39
 
 
40
  pipe = pipeline(task="text-classification", model=model, tokenizer=tokenizer)
41
 
42
  def classify_text(text):
 
43
  results = pipe(text)
 
 
 
 
 
 
 
 
 
44
  output = ""
45
+
46
+ if len(results) > 0:
47
+ # Print the first result
48
+ output += f"Label 1: {result['label']}, Score: {result['score']:.4f}\n"
49
+
50
+ # Print the second result if it exists
51
+ if len(results) > 1:
52
+ output += f"Label 2: {results[1]['label']}, Score: {results[1]['score']:.4f}\n"
53
+
54
  return output
55
 
56
  gr.Interface(
 
 
 
 
 
 
 
 
57
  fn=classify_text,
58
  title="Sentiment Classifier",
59
  description="Enter text to classify sentiment",