Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
from transformers import AutoTokenizer, pipeline
|
3 |
+
from optimum.onnxruntime import ORTModelForSequenceClassification
|
4 |
+
import gradio as gr
|
5 |
+
# with gr.Blocks(css=".gradio-container {background-color: red}") as demo:# with gr.Blocks(css=".gradio-container {background: url('file=clouds.jpg')}") as demo:# css = """
|
6 |
+
|
7 |
+
# with gr.Blocks(css=css) as demo:# box1 = gr.Textbox(value="Good Job", elem_classes="feedback")# box2 = gr.Textbox(value="Failure", elem_id="warning", elem_classes="feedback")
|
8 |
+
model_id = "HassamAliCADI/SentimentOnx"
|
9 |
+
|
10 |
+
model = ORTModelForSequenceClassification.from_pretrained(model_id)
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
12 |
+
# with gr.Blocks(css=".gradio-container {background-color: red}") as demo:# with gr.Blocks(css=".gradio-container {background: url('file=clouds.jpg')}") as demo:# css = """
|
13 |
+
|
14 |
+
# with gr.Blocks(css=css) as demo:# box1 = gr.Textbox(value="Good Job", elem_classes="feedback")# box2 = gr.Textbox(value="Failure", elem_id="warning", elem_classes="feedback")
|
15 |
+
pipe = pipeline(task="text-classification", model=model, tokenizer=tokenizer)
|
16 |
+
|
17 |
+
def classify_text(text):
|
18 |
+
start_time = time.time()
|
19 |
+
results = pipe(text)
|
20 |
+
end_time = time.time()
|
21 |
+
|
22 |
+
# with gr.Blocks(css=".gradio-container {background-color: red}") as demo:# with gr.Blocks(css=".gradio-container {background: url('file=clouds.jpg')}") as demo:# css = """
|
23 |
+
|
24 |
+
# with gr.Blocks(css=css) as demo:# box1 = gr.Textbox(value="Good Job", elem_classes="feedback")# box2 = gr.Textbox(value="Failure", elem_id="warning", elem_classes="feedback")
|
25 |
+
|
26 |
+
|
27 |
+
# #warning {background-color: #FFCCCB}# .feedback textarea {font-size: 24px !important}# """
|
28 |
+
|
29 |
+
output = ""
|
30 |
+
for result in results:
|
31 |
+
output += f"Label: {result['label']}, Score: {result['score']:.4f}\n"
|
32 |
+
output += f"\nGeneration time: {end_time - start_time:.2f} seconds"
|
33 |
+
return output
|
34 |
+
|
35 |
+
gr.Interface(
|
36 |
+
|
37 |
+
# with gr.Blocks(css=".gradio-container {background-color: red}") as demo:# with gr.Blocks(css=".gradio-container {background: url('file=clouds.jpg')}") as demo:# css = """
|
38 |
+
|
39 |
+
# with gr.Blocks(css=css) as demo:# box1 = gr.Textbox(value="Good Job", elem_classes="feedback")# box2 = gr.Textbox(value="Failure", elem_id="warning", elem_classes="feedback")
|
40 |
+
|
41 |
+
|
42 |
+
# #warning {background-color: #FFCCCB}# .feedback textarea {font-size: 24px !important}# """
|
43 |
+
|
44 |
+
fn=classify_text,
|
45 |
+
title="Sentiment Classifier",
|
46 |
+
description="Enter text to classify sentiment",
|
47 |
+
inputs=gr.Textbox(
|
48 |
+
label="Input Text",
|
49 |
+
placeholder="Type something here..."
|
50 |
+
),
|
51 |
+
outputs=gr.Textbox(
|
52 |
+
label="Classification Results"
|
53 |
+
),
|
54 |
+
examples=[
|
55 |
+
["I am deeply disappointed in your bad performance in last league match loss, and quite disappointed, sad because of it."],
|
56 |
+
["I am very happy with your excellent performance!"]
|
57 |
+
]
|
58 |
+
).launch()
|