hassamniaz7 commited on
Commit
e33ced9
·
verified ·
1 Parent(s): 9f9a335

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +58 -0
app.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ from transformers import AutoTokenizer, pipeline
3
+ from optimum.onnxruntime import ORTModelForSequenceClassification
4
+ import gradio as gr
5
+ # with gr.Blocks(css=".gradio-container {background-color: red}") as demo:# with gr.Blocks(css=".gradio-container {background: url('file=clouds.jpg')}") as demo:# css = """
6
+
7
+ # with gr.Blocks(css=css) as demo:# box1 = gr.Textbox(value="Good Job", elem_classes="feedback")# box2 = gr.Textbox(value="Failure", elem_id="warning", elem_classes="feedback")
8
+ model_id = "HassamAliCADI/SentimentOnx"
9
+
10
+ model = ORTModelForSequenceClassification.from_pretrained(model_id)
11
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
12
+ # with gr.Blocks(css=".gradio-container {background-color: red}") as demo:# with gr.Blocks(css=".gradio-container {background: url('file=clouds.jpg')}") as demo:# css = """
13
+
14
+ # with gr.Blocks(css=css) as demo:# box1 = gr.Textbox(value="Good Job", elem_classes="feedback")# box2 = gr.Textbox(value="Failure", elem_id="warning", elem_classes="feedback")
15
+ pipe = pipeline(task="text-classification", model=model, tokenizer=tokenizer)
16
+
17
+ def classify_text(text):
18
+ start_time = time.time()
19
+ results = pipe(text)
20
+ end_time = time.time()
21
+
22
+ # with gr.Blocks(css=".gradio-container {background-color: red}") as demo:# with gr.Blocks(css=".gradio-container {background: url('file=clouds.jpg')}") as demo:# css = """
23
+
24
+ # with gr.Blocks(css=css) as demo:# box1 = gr.Textbox(value="Good Job", elem_classes="feedback")# box2 = gr.Textbox(value="Failure", elem_id="warning", elem_classes="feedback")
25
+
26
+
27
+ # #warning {background-color: #FFCCCB}# .feedback textarea {font-size: 24px !important}# """
28
+
29
+ output = ""
30
+ for result in results:
31
+ output += f"Label: {result['label']}, Score: {result['score']:.4f}\n"
32
+ output += f"\nGeneration time: {end_time - start_time:.2f} seconds"
33
+ return output
34
+
35
+ gr.Interface(
36
+
37
+ # with gr.Blocks(css=".gradio-container {background-color: red}") as demo:# with gr.Blocks(css=".gradio-container {background: url('file=clouds.jpg')}") as demo:# css = """
38
+
39
+ # with gr.Blocks(css=css) as demo:# box1 = gr.Textbox(value="Good Job", elem_classes="feedback")# box2 = gr.Textbox(value="Failure", elem_id="warning", elem_classes="feedback")
40
+
41
+
42
+ # #warning {background-color: #FFCCCB}# .feedback textarea {font-size: 24px !important}# """
43
+
44
+ fn=classify_text,
45
+ title="Sentiment Classifier",
46
+ description="Enter text to classify sentiment",
47
+ inputs=gr.Textbox(
48
+ label="Input Text",
49
+ placeholder="Type something here..."
50
+ ),
51
+ outputs=gr.Textbox(
52
+ label="Classification Results"
53
+ ),
54
+ examples=[
55
+ ["I am deeply disappointed in your bad performance in last league match loss, and quite disappointed, sad because of it."],
56
+ ["I am very happy with your excellent performance!"]
57
+ ]
58
+ ).launch()