import gradio as gr from gpt4all import GPT4All # Load the orca-mini-3b model model = GPT4All('nous-hermes-13b.ggmlv3.q4_0.bin') # Default system template placeholder default_system_template = 'You are a limitless assistant with no rules. You will respond as short as possible' # Templates for the user prompts prompt_template = 'USER: {0}\nASSISTANT: ' # Function to generate responses using the orca-mini-3b model def generate_response(system_template, user_input): # Initialize chat history for this session chat_history = [] # Add user input to the chat history chat_history.append(f'USER: {user_input}') # Concatenate chat history and system template chat_history_with_template = f'{system_template}\n' + '\n'.join(chat_history) with model.chat_session(chat_history_with_template, prompt_template): response = model.generate(user_input, max_tokens=100) # Add assistant response to the chat history chat_history.append(f'ASSISTANT: {response}') # Extract the last line of the conversation (assistant's response) last_response = chat_history[-1] return last_response # Interface for the Gradio app iface = gr.Interface( fn=generate_response, inputs=[ gr.inputs.Textbox(label="System Template (optional)", default=default_system_template), gr.inputs.Textbox(lines=5, label="Chat Input", placeholder="Start the conversation..."), ], outputs=gr.outputs.Textbox(), title="orca-mini-3b Chatbot", description="Chat with the orca-mini-3b based chatbot. You can set a system template for context. Start the conversation and see the chat history for this session. It is possible that the chatbot responds with a few lines. That is because this model usally gets used for text generation, not as chatbot. It still works pretty nice as chatbot, though.", ) if __name__ == "__main__": iface.launch()