xmrt commited on
Commit
38ea66b
·
1 Parent(s): b75d5b3

juhu cuda virker

Browse files
Files changed (1) hide show
  1. main.py +19 -13
main.py CHANGED
@@ -117,7 +117,8 @@ def pose3d(video):
117
 
118
  result_generator = human3d(video,
119
  vis_out_dir = vis_out_dir,
120
- thickness=2,
 
121
  return_vis=True,
122
  rebase_keypoint_height=True,
123
  device=device)
@@ -141,7 +142,8 @@ def pose2d(video, kpt_threshold):
141
  result_generator = human(video,
142
  vis_out_dir = vis_out_dir,
143
  return_vis=True,
144
- thickness=2,
 
145
  rebase_keypoint_height=True,
146
  kpt_thr=kpt_threshold,
147
  device=device
@@ -167,7 +169,8 @@ def pose2dhand(video, kpt_threshold):
167
  result_generator = hand(video,
168
  vis_out_dir = vis_out_dir,
169
  return_vis=True,
170
- thickness=2,
 
171
  rebase_keypoint_height=True,
172
  kpt_thr=kpt_threshold,
173
  device=device)
@@ -187,7 +190,7 @@ def run_UI():
187
  with gr.Column():
188
  video_input = gr.Video(source="upload", type="filepath", height=612)
189
  # Insert slider with kpt_thr
190
- file_kpthr = gr.Slider(minimum=0.1, maximum=1, step=20, default=0.3, label='Keypoint threshold')
191
 
192
  submit_pose_file = gr.Button("Make 2d pose estimation", variant="primary")
193
  submit_pose3d_file = gr.Button("Make 3d pose estimation", variant="primary")
@@ -207,7 +210,7 @@ def run_UI():
207
  with gr.Column():
208
  webcam_input = gr.Video(source="webcam", height=612)
209
 
210
- web_kpthr = gr.Slider(minimum=0.1, maximum=1, step=20, default=0.3, label='Keypoint threshold')
211
 
212
  submit_pose_web = gr.Button("Make 2d pose estimation", variant="primary")
213
  submit_pose3d_web = gr.Button("Make 3d pose estimation", variant="primary")
@@ -234,20 +237,23 @@ def run_UI():
234
  gr.Markdown("""
235
  \n # Information about the models
236
 
237
- \n ## Pose models: All the pose estimation models comes from the library [MMpose](https://github.com/open-mmlab/mmpose). It is a library for human pose estimation that provides pre-trained models for 2D and 3D pose estimation.
 
 
238
 
239
- \n ### The 2D pose model is used for estimating the 2D coordinates of human body joints from an image or a video frame. The model uses a convolutional neural network (CNN) to predict the joint locations and their confidence scores.
240
 
241
- \n ### The 2D hand model is a specialized version of the 2D pose model that is designed for hand pose estimation. It uses a similar CNN architecture to the 2D pose model but is trained specifically for detecting the joints in the hand.
242
 
243
- \n ### The 3D pose model is used for estimating the 3D coordinates of human body joints from an image or a video frame. The model uses a combination of 2D pose estimation and depth estimation to infer the 3D joint locations.
244
 
245
- \n ### All of these models are pre-trained on large datasets and can be fine-tuned on custom datasets for specific applications.
 
 
246
 
247
- \n ## Ultralight detection and tracking model: The `track()` method in the Ultralight model is used for object tracking in videos. It takes a video file or a camera stream as input and returns the tracked objects in each frame. The method uses the COCO dataset classes for object detection and tracking.
248
 
249
- \n ### The COCO dataset contains 80 classes of objects such as person, car, bicycle, etc. See https://docs.ultralytics.com/datasets/detect/coco/ for all available classes. The `track()` method uses the COCO classes to detect and track the objects in the video frames.
250
- The tracked objects are represented as bounding boxes with labels indicating the class of the object.""")
251
 
252
  # From file
253
  submit_pose_file.click(fn=pose2d,
 
117
 
118
  result_generator = human3d(video,
119
  vis_out_dir = vis_out_dir,
120
+ thickness=4,
121
+ radius = 5,
122
  return_vis=True,
123
  rebase_keypoint_height=True,
124
  device=device)
 
142
  result_generator = human(video,
143
  vis_out_dir = vis_out_dir,
144
  return_vis=True,
145
+ radius = 5,
146
+ thickness=4,
147
  rebase_keypoint_height=True,
148
  kpt_thr=kpt_threshold,
149
  device=device
 
169
  result_generator = hand(video,
170
  vis_out_dir = vis_out_dir,
171
  return_vis=True,
172
+ thickness = 4,
173
+ radius = 5,
174
  rebase_keypoint_height=True,
175
  kpt_thr=kpt_threshold,
176
  device=device)
 
190
  with gr.Column():
191
  video_input = gr.Video(source="upload", type="filepath", height=612)
192
  # Insert slider with kpt_thr
193
+ file_kpthr = gr.Slider(minimum=0.000001, maximum=0.001, step=0.000001, default=0.00001, label='Keypoint threshold')
194
 
195
  submit_pose_file = gr.Button("Make 2d pose estimation", variant="primary")
196
  submit_pose3d_file = gr.Button("Make 3d pose estimation", variant="primary")
 
210
  with gr.Column():
211
  webcam_input = gr.Video(source="webcam", height=612)
212
 
213
+ web_kpthr = gr.Slider(minimum=0.000001, maximum=0.001, step=0.000001, default=0.00001, label='Keypoint threshold')
214
 
215
  submit_pose_web = gr.Button("Make 2d pose estimation", variant="primary")
216
  submit_pose3d_web = gr.Button("Make 3d pose estimation", variant="primary")
 
237
  gr.Markdown("""
238
  \n # Information about the models
239
 
240
+ \n ## Pose models:
241
+
242
+ \n All the pose estimation models comes from the library [MMpose](https://github.com/open-mmlab/mmpose). It is a library for human pose estimation that provides pre-trained models for 2D and 3D pose estimation.
243
 
244
+ \n The 2D pose model is used for estimating the 2D coordinates of human body joints from an image or a video frame. The model uses a convolutional neural network (CNN) to predict the joint locations and their confidence scores.
245
 
246
+ \n The 2D hand model is a specialized version of the 2D pose model that is designed for hand pose estimation. It uses a similar CNN architecture to the 2D pose model but is trained specifically for detecting the joints in the hand.
247
 
248
+ \n The 3D pose model is used for estimating the 3D coordinates of human body joints from an image or a video frame. The model uses a combination of 2D pose estimation and depth estimation to infer the 3D joint locations.
249
 
250
+ \n
251
+
252
+ \n ## Detection and tracking:
253
 
254
+ \n The tracking method in the Ultralight's YOLOv8 model is used for object tracking in videos. It takes a video file or a camera stream as input and returns the tracked objects in each frame. The method uses the COCO dataset classes for object detection and tracking.
255
 
256
+ \n The COCO dataset contains 80 classes of objects such as person, car, bicycle, etc. See https://docs.ultralytics.com/datasets/detect/coco/ for all available classes. The tracking method uses the COCO classes to detect and track the objects in the video frames. The tracked objects are represented as bounding boxes with labels indicating the class of the object.""")
 
257
 
258
  # From file
259
  submit_pose_file.click(fn=pose2d,