gr state on human3d
Browse files- main_noweb.py +116 -121
main_noweb.py
CHANGED
@@ -32,9 +32,9 @@ print("[INFO]: Imported modules!")
|
|
32 |
human = MMPoseInferencer("simcc_mobilenetv2_wo-deconv-8xb64-210e_coco-256x192") # simcc_mobilenetv2_wo-deconv-8xb64-210e_coco-256x192 dekr_hrnet-w32_8xb10-140e_coco-512x512
|
33 |
hand = MMPoseInferencer("hand")
|
34 |
#model3d = gr.State()
|
35 |
-
human3d = MMPoseInferencer(device=device,
|
36 |
pose3d="human3d",
|
37 |
-
scope="mmpose")
|
38 |
|
39 |
|
40 |
#"https://github.com/open-mmlab/mmpose/blob/main/configs/body_3d_keypoint/pose_lift/h36m/pose-lift_simplebaseline3d_8xb64-200e_h36m.py",
|
@@ -94,16 +94,14 @@ def check_extension(video):
|
|
94 |
return video
|
95 |
|
96 |
|
97 |
-
def pose3d(video, kpt_threshold, ):
|
98 |
|
99 |
video = check_extension(video)
|
100 |
print(device)
|
101 |
|
102 |
#human3d = MMPoseInferencer(device=device, pose3d="human3d", scope="mmpose")#"pose-lift_videopose3d-243frm-supv-cpn-ft_8xb128-200e_h36m")
|
103 |
|
104 |
-
print("HUMAN 3d downloaded!!")
|
105 |
-
human3dst = gr.State(value=human3d)
|
106 |
-
|
107 |
# Define new unique folder
|
108 |
add_dir = str(uuid.uuid4())
|
109 |
vis_out_dir = os.path.join("/".join(video.split("/")[:-1]), add_dir)
|
@@ -111,7 +109,7 @@ def pose3d(video, kpt_threshold, ):
|
|
111 |
os.makedirs(add_dir)
|
112 |
print(check_fps(video))
|
113 |
#video = human3d.preprocess(video, batch_size=8)
|
114 |
-
result_generator =
|
115 |
vis_out_dir = add_dir,
|
116 |
radius = 8,
|
117 |
thickness = 5,
|
@@ -158,11 +156,11 @@ def pose2d(video, kpt_threshold):
|
|
158 |
|
159 |
return "".join(out_file), "".join(kpoints)
|
160 |
|
161 |
-
def pose3dbatch(video, kpt_threshold):
|
162 |
kpoints=[]
|
163 |
outvids=[]
|
164 |
-
for v, t in zip(video, kpt_threshold):
|
165 |
-
vname, kname = pose3d(v, t)
|
166 |
outvids.append(vname)
|
167 |
kpoints.append(kname)
|
168 |
return [outvids]#kpoints, outvids
|
@@ -195,61 +193,60 @@ def pose2dhand(video, kpt_threshold):
|
|
195 |
|
196 |
return "".join(out_file), "".join(kpoints)
|
197 |
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
with
|
202 |
-
with gr.
|
203 |
-
with gr.
|
204 |
-
with gr.
|
205 |
-
with gr.
|
206 |
-
with gr.
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
|
223 |
-
gr.Markdown("Download the .json file that contains the keypoint positions for each frame in the video.")
|
224 |
-
jsonoutput = gr.File(file_types=[".json"])
|
225 |
-
gr.Markdown("""There are multiple ways to interact with these keypoints.
|
226 |
-
\n The example below shows how you can calulate the angle on the elbow for example.
|
227 |
-
\n Copy the code into your own preferred interpreter and experiment with the keypoint file.
|
228 |
-
\n If you choose to run the code, start by installing the packages json and numpy. The complete overview of the keypoint indices can be seen in the tab 'General information'. """)
|
229 |
-
gr.Code(
|
230 |
-
value="""
|
231 |
-
|
232 |
# Importing packages needed
|
233 |
import json
|
234 |
import numpy as np
|
235 |
|
236 |
# First we load the data
|
237 |
with open(file_path, 'r') as json_file:
|
238 |
-
|
239 |
|
240 |
# The we define a function for calculating angles
|
241 |
def calculate_angle(a, b, c):
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
|
|
|
|
|
|
248 |
|
249 |
-
|
250 |
-
angle = 360-angle
|
251 |
-
|
252 |
-
return angle
|
253 |
|
254 |
|
255 |
# COCO keypoint indices
|
@@ -266,78 +263,76 @@ wrist_point = data[0]['instances'][0]['keypoints'][wrist_index]
|
|
266 |
angle = calculate_angle(shoulder_point, elbow_point, wrist_point)
|
267 |
print("Angle is: ", angle)
|
268 |
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
with gr.Tab("General information"):
|
278 |
-
gr.Markdown("""
|
279 |
-
\n # Information about the models
|
280 |
-
|
281 |
-
\n ## Pose models:
|
282 |
-
|
283 |
-
\n All the pose estimation models come from the library [MMpose](https://github.com/open-mmlab/mmpose). It is a library for human pose estimation that provides pre-trained models for 2D and 3D pose estimation.
|
284 |
-
|
285 |
-
\n The 2D pose model is used for estimating the 2D coordinates of human body joints from an image or a video frame. The model uses a convolutional neural network (CNN) to predict the joint locations and their confidence scores.
|
286 |
-
|
287 |
-
\n The 2D hand model is a specialized version of the 2D pose model that is designed for hand pose estimation. It uses a similar CNN architecture to the 2D pose model but is trained specifically for detecting the joints in the hand.
|
288 |
-
|
289 |
-
\n The 3D pose model is used for estimating the 3D coordinates of human body joints from an image or a video frame. The model uses a combination of 2D pose estimation and depth estimation to infer the 3D joint locations.
|
290 |
-
|
291 |
-
\n The keypoints in the 2D pose model has the following order:
|
292 |
-
|
293 |
-
\n ```
|
294 |
-
0: Nose
|
295 |
-
1: Left Eye
|
296 |
-
2: Right Eye
|
297 |
-
3: Left Ear
|
298 |
-
4: Right Ear
|
299 |
-
5: Left Shoulder
|
300 |
-
6: Right Shoulder
|
301 |
-
7: Left Elbow
|
302 |
-
8: Right Elbow
|
303 |
-
9: Left Wrist
|
304 |
-
10: Right Wrist
|
305 |
-
11: Left Hip
|
306 |
-
12: Right Hip
|
307 |
-
13: Left Knee
|
308 |
-
14: Right Knee
|
309 |
-
15: Left Ankle
|
310 |
-
16: Right Ankle
|
311 |
-
```
|
312 |
-
|
313 |
-
\n Below, you can see a visualization of the poses of the 2d, 3d and hand keypoint locations: """)
|
314 |
-
gr.Image("./cocoposes.png", width="200")
|
315 |
-
gr.Image("./cocohand.png", width="200")
|
316 |
-
|
317 |
|
318 |
-
|
319 |
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
332 |
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
|
339 |
if __name__ == "__main__":
|
340 |
-
block = UI()
|
341 |
block.queue(max_size=60,
|
342 |
concurrency_count=40, # When you increase the concurrency_count parameter in queue(), max_threads() in launch() is automatically increased as well.
|
343 |
#max_size=25, # Maximum number of requests that the queue processes
|
|
|
32 |
human = MMPoseInferencer("simcc_mobilenetv2_wo-deconv-8xb64-210e_coco-256x192") # simcc_mobilenetv2_wo-deconv-8xb64-210e_coco-256x192 dekr_hrnet-w32_8xb10-140e_coco-512x512
|
33 |
hand = MMPoseInferencer("hand")
|
34 |
#model3d = gr.State()
|
35 |
+
human3d = gr.State(MMPoseInferencer(device=device,
|
36 |
pose3d="human3d",
|
37 |
+
scope="mmpose"))
|
38 |
|
39 |
|
40 |
#"https://github.com/open-mmlab/mmpose/blob/main/configs/body_3d_keypoint/pose_lift/h36m/pose-lift_simplebaseline3d_8xb64-200e_h36m.py",
|
|
|
94 |
return video
|
95 |
|
96 |
|
97 |
+
def pose3d(video, kpt_threshold, model):
|
98 |
|
99 |
video = check_extension(video)
|
100 |
print(device)
|
101 |
|
102 |
#human3d = MMPoseInferencer(device=device, pose3d="human3d", scope="mmpose")#"pose-lift_videopose3d-243frm-supv-cpn-ft_8xb128-200e_h36m")
|
103 |
|
104 |
+
print("HUMAN 3d downloaded!!")
|
|
|
|
|
105 |
# Define new unique folder
|
106 |
add_dir = str(uuid.uuid4())
|
107 |
vis_out_dir = os.path.join("/".join(video.split("/")[:-1]), add_dir)
|
|
|
109 |
os.makedirs(add_dir)
|
110 |
print(check_fps(video))
|
111 |
#video = human3d.preprocess(video, batch_size=8)
|
112 |
+
result_generator = model(video,
|
113 |
vis_out_dir = add_dir,
|
114 |
radius = 8,
|
115 |
thickness = 5,
|
|
|
156 |
|
157 |
return "".join(out_file), "".join(kpoints)
|
158 |
|
159 |
+
def pose3dbatch(video, kpt_threshold, model):
|
160 |
kpoints=[]
|
161 |
outvids=[]
|
162 |
+
for v, t in zip(video, kpt_threshold, model):
|
163 |
+
vname, kname = pose3d(v, t, model)
|
164 |
outvids.append(vname)
|
165 |
kpoints.append(kname)
|
166 |
return [outvids]#kpoints, outvids
|
|
|
193 |
|
194 |
return "".join(out_file), "".join(kpoints)
|
195 |
|
196 |
+
block = gr.Blocks()
|
197 |
+
|
198 |
+
with block:
|
199 |
+
with gr.Column():
|
200 |
+
with gr.Tab("Upload video"):
|
201 |
+
with gr.Column():
|
202 |
+
with gr.Row():
|
203 |
+
with gr.Column():
|
204 |
+
with gr.Row():
|
205 |
+
video_input = gr.Video(source="upload", type="filepath", height=256, width=192)
|
206 |
+
# Insert slider with kpt_thr
|
207 |
+
with gr.Column():
|
208 |
+
gr.Markdown("Drag the keypoint threshold to filter out lower probability keypoints:")
|
209 |
+
file_kpthr = gr.Slider(0, 1, value=0.3, label='Keypoint threshold')
|
210 |
+
with gr.Row():
|
211 |
+
submit_pose_file = gr.Button("Make 2d pose estimation")
|
212 |
+
submit_pose3d_file = gr.Button("Make 3d pose estimation")
|
213 |
+
submit_hand_file = gr.Button("Make 2d hand estimation")
|
214 |
+
|
215 |
+
with gr.Row():
|
216 |
+
video_output1 = gr.PlayableVideo(label = "Estimate human 2d poses", show_label=True, height=256)
|
217 |
+
video_output2 = gr.PlayableVideo(label = "Estimate human 3d poses", show_label=True, height=256)
|
218 |
+
video_output3 = gr.PlayableVideo(label = "Estimate human hand poses", show_label=True, height=256)
|
219 |
+
|
220 |
+
gr.Markdown("Download the .json file that contains the keypoint positions for each frame in the video.")
|
221 |
+
jsonoutput = gr.File(file_types=[".json"])
|
222 |
+
gr.Markdown("""There are multiple ways to interact with these keypoints.
|
223 |
+
\n The example below shows how you can calulate the angle on the elbow for example.
|
224 |
+
\n Copy the code into your own preferred interpreter and experiment with the keypoint file.
|
225 |
+
\n If you choose to run the code, start by installing the packages json and numpy. The complete overview of the keypoint indices can be seen in the tab 'General information'. """)
|
226 |
+
gr.Code(
|
227 |
+
value="""
|
228 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
# Importing packages needed
|
230 |
import json
|
231 |
import numpy as np
|
232 |
|
233 |
# First we load the data
|
234 |
with open(file_path, 'r') as json_file:
|
235 |
+
data = json.load(json_file)
|
236 |
|
237 |
# The we define a function for calculating angles
|
238 |
def calculate_angle(a, b, c):
|
239 |
+
a = np.array(a) # First point
|
240 |
+
b = np.array(b) # Middle point
|
241 |
+
c = np.array(c) # End point
|
242 |
+
|
243 |
+
radians = np.arctan2(c[1]-b[1], c[0]-b[0]) - np.arctan2(a[1]-b[1], a[0]-b[0])
|
244 |
+
angle = np.abs(radians*180.0/np.pi)
|
245 |
+
|
246 |
+
if angle >180.0:
|
247 |
+
angle = 360-angle
|
248 |
|
249 |
+
return angle
|
|
|
|
|
|
|
250 |
|
251 |
|
252 |
# COCO keypoint indices
|
|
|
263 |
angle = calculate_angle(shoulder_point, elbow_point, wrist_point)
|
264 |
print("Angle is: ", angle)
|
265 |
|
266 |
+
""",
|
267 |
+
language="python",
|
268 |
+
interactive=False,
|
269 |
+
show_label=False,
|
270 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
|
|
|
272 |
|
273 |
+
|
274 |
+
with gr.Tab("General information"):
|
275 |
+
gr.Markdown("""
|
276 |
+
\n # Information about the models
|
277 |
+
|
278 |
+
\n ## Pose models:
|
279 |
+
|
280 |
+
\n All the pose estimation models come from the library [MMpose](https://github.com/open-mmlab/mmpose). It is a library for human pose estimation that provides pre-trained models for 2D and 3D pose estimation.
|
281 |
+
|
282 |
+
\n The 2D pose model is used for estimating the 2D coordinates of human body joints from an image or a video frame. The model uses a convolutional neural network (CNN) to predict the joint locations and their confidence scores.
|
283 |
+
|
284 |
+
\n The 2D hand model is a specialized version of the 2D pose model that is designed for hand pose estimation. It uses a similar CNN architecture to the 2D pose model but is trained specifically for detecting the joints in the hand.
|
285 |
+
|
286 |
+
\n The 3D pose model is used for estimating the 3D coordinates of human body joints from an image or a video frame. The model uses a combination of 2D pose estimation and depth estimation to infer the 3D joint locations.
|
287 |
+
|
288 |
+
\n The keypoints in the 2D pose model has the following order:
|
289 |
+
|
290 |
+
\n ```
|
291 |
+
0: Nose
|
292 |
+
1: Left Eye
|
293 |
+
2: Right Eye
|
294 |
+
3: Left Ear
|
295 |
+
4: Right Ear
|
296 |
+
5: Left Shoulder
|
297 |
+
6: Right Shoulder
|
298 |
+
7: Left Elbow
|
299 |
+
8: Right Elbow
|
300 |
+
9: Left Wrist
|
301 |
+
10: Right Wrist
|
302 |
+
11: Left Hip
|
303 |
+
12: Right Hip
|
304 |
+
13: Left Knee
|
305 |
+
14: Right Knee
|
306 |
+
15: Left Ankle
|
307 |
+
16: Right Ankle
|
308 |
+
```
|
309 |
+
|
310 |
+
\n Below, you can see a visualization of the poses of the 2d, 3d and hand keypoint locations: """)
|
311 |
+
gr.Image("./cocoposes.png", width="200")
|
312 |
+
gr.Image("./cocohand.png", width="200")
|
313 |
+
|
314 |
+
|
315 |
|
316 |
+
|
317 |
+
# From file
|
318 |
+
submit_pose_file.click(fn=pose2d,
|
319 |
+
inputs= [video_input, file_kpthr],
|
320 |
+
outputs = [video_output1, jsonoutput],
|
321 |
+
queue=True)
|
322 |
+
|
323 |
+
submit_pose3d_file.click(fn=pose3dbatch,
|
324 |
+
inputs= [video_input, file_kpthr, human3d],
|
325 |
+
outputs = video_output2,#[video_output2, jsonoutput],
|
326 |
+
batch=True,
|
327 |
+
max_batch_size=16,
|
328 |
+
queue=True) # Sometimes it worked with queue false? But still slow
|
329 |
+
|
330 |
+
submit_hand_file.click(fn=pose2dhand,
|
331 |
+
inputs= [video_input, file_kpthr],
|
332 |
+
outputs = [video_output3, jsonoutput],
|
333 |
+
queue=True)
|
334 |
|
335 |
if __name__ == "__main__":
|
|
|
336 |
block.queue(max_size=60,
|
337 |
concurrency_count=40, # When you increase the concurrency_count parameter in queue(), max_threads() in launch() is automatically increased as well.
|
338 |
#max_size=25, # Maximum number of requests that the queue processes
|