skipping tracking
Browse files
main.py
CHANGED
|
@@ -50,6 +50,7 @@ def show_tracking(video_content, vis_out_dir, model):
|
|
| 50 |
|
| 51 |
# Prepare to save video
|
| 52 |
out_file = os.path.join(vis_out_dir, "track.mp4")
|
|
|
|
| 53 |
print("[INFO]: TRACK", out_file)
|
| 54 |
|
| 55 |
fourcc = cv2.VideoWriter_fourcc(*"mp4v") # Codec for MP4 video
|
|
@@ -62,7 +63,7 @@ def show_tracking(video_content, vis_out_dir, model):
|
|
| 62 |
# Go through frames and write them
|
| 63 |
for frame_track in video_track:
|
| 64 |
result_track = frame_track[0].plot() # plot a BGR numpy array of predictions
|
| 65 |
-
|
| 66 |
#print(type(result_pose)) numpy ndarray
|
| 67 |
out_track.write(result_track)
|
| 68 |
|
|
@@ -99,6 +100,7 @@ def infer(video, check):
|
|
| 99 |
inferencer = inferencers[i] # 'hand', 'human , device='cuda'
|
| 100 |
|
| 101 |
if i == "Detect and track":
|
|
|
|
| 102 |
out_file = show_tracking(video, vis_out_dir, inferencer)
|
| 103 |
|
| 104 |
else:
|
|
@@ -108,7 +110,7 @@ def infer(video, check):
|
|
| 108 |
out_files.extend(out_file)
|
| 109 |
print(out_files)
|
| 110 |
|
| 111 |
-
return out_files[0], out_files[1], out_files[2]
|
| 112 |
|
| 113 |
def run():
|
| 114 |
#https://github.com/open-mmlab/mmpose/blob/main/docs/en/user_guides/inference.md
|
|
@@ -118,7 +120,7 @@ def run():
|
|
| 118 |
webcam = gr.Interface(
|
| 119 |
fn=infer,
|
| 120 |
inputs= [gr.Video(source="webcam", height=412), check_web],
|
| 121 |
-
outputs = [gr.PlayableVideo(), gr.PlayableVideo(), gr.PlayableVideo()
|
| 122 |
title = 'Pose estimation',
|
| 123 |
description = 'Pose estimation on video',
|
| 124 |
allow_flagging=False
|
|
@@ -127,7 +129,7 @@ def run():
|
|
| 127 |
file = gr.Interface(
|
| 128 |
infer,
|
| 129 |
inputs = [gr.Video(source="upload", height=412), check_file],
|
| 130 |
-
outputs = [gr.PlayableVideo(), gr.PlayableVideo(), gr.PlayableVideo()
|
| 131 |
allow_flagging=False
|
| 132 |
)
|
| 133 |
|
|
|
|
| 50 |
|
| 51 |
# Prepare to save video
|
| 52 |
out_file = os.path.join(vis_out_dir, "track.mp4")
|
| 53 |
+
out_file = "track.mp4"
|
| 54 |
print("[INFO]: TRACK", out_file)
|
| 55 |
|
| 56 |
fourcc = cv2.VideoWriter_fourcc(*"mp4v") # Codec for MP4 video
|
|
|
|
| 63 |
# Go through frames and write them
|
| 64 |
for frame_track in video_track:
|
| 65 |
result_track = frame_track[0].plot() # plot a BGR numpy array of predictions
|
| 66 |
+
print("[INFO] Done with frames")
|
| 67 |
#print(type(result_pose)) numpy ndarray
|
| 68 |
out_track.write(result_track)
|
| 69 |
|
|
|
|
| 100 |
inferencer = inferencers[i] # 'hand', 'human , device='cuda'
|
| 101 |
|
| 102 |
if i == "Detect and track":
|
| 103 |
+
continue
|
| 104 |
out_file = show_tracking(video, vis_out_dir, inferencer)
|
| 105 |
|
| 106 |
else:
|
|
|
|
| 110 |
out_files.extend(out_file)
|
| 111 |
print(out_files)
|
| 112 |
|
| 113 |
+
return out_files[0], out_files[1], out_files[2]#, out_files[3]
|
| 114 |
|
| 115 |
def run():
|
| 116 |
#https://github.com/open-mmlab/mmpose/blob/main/docs/en/user_guides/inference.md
|
|
|
|
| 120 |
webcam = gr.Interface(
|
| 121 |
fn=infer,
|
| 122 |
inputs= [gr.Video(source="webcam", height=412), check_web],
|
| 123 |
+
outputs = [gr.PlayableVideo(), gr.PlayableVideo(), gr.PlayableVideo()],# gr.PlayableVideo()],
|
| 124 |
title = 'Pose estimation',
|
| 125 |
description = 'Pose estimation on video',
|
| 126 |
allow_flagging=False
|
|
|
|
| 129 |
file = gr.Interface(
|
| 130 |
infer,
|
| 131 |
inputs = [gr.Video(source="upload", height=412), check_file],
|
| 132 |
+
outputs = [gr.PlayableVideo(), gr.PlayableVideo(), gr.PlayableVideo()],#, gr.PlayableVideo()],
|
| 133 |
allow_flagging=False
|
| 134 |
)
|
| 135 |
|