xmrt commited on
Commit
c76c2fc
·
1 Parent(s): 577bb6b

visualization

Browse files
Files changed (1) hide show
  1. main.py +8 -4
main.py CHANGED
@@ -2,19 +2,22 @@ import mmpose
2
  import os
3
  from mmpose.apis import MMPoseInferencer
4
 
5
- inferencer = MMPoseInferencer('human')
6
  print("[INFO]: Imported modules!")
7
 
8
  import gradio as gr
9
 
10
  def greet(photo):
 
 
11
  print("[INFO]: Downloaded models!")
12
- result_generator = inferencer(photo)
 
13
 
14
  print("[INFO]: Visualizing results!")
 
 
15
  result = next(result_generator)
16
- print(os.listdir())
17
- print(result['visualization'])
18
  return result['visualization']
19
 
20
  # # specify detection model by alias
@@ -28,6 +31,7 @@ def greet(photo):
28
  # )
29
 
30
  def run():
 
31
  demo = gr.Interface(fn=greet,
32
  inputs=gr.Image(source="webcam"),
33
  outputs=gr.Image())
 
2
  import os
3
  from mmpose.apis import MMPoseInferencer
4
 
 
5
  print("[INFO]: Imported modules!")
6
 
7
  import gradio as gr
8
 
9
  def greet(photo):
10
+ inferencer = MMPoseInferencer('human')
11
+
12
  print("[INFO]: Downloaded models!")
13
+ print(photo)
14
+ result_generator = inferencer(photo, show=False)
15
 
16
  print("[INFO]: Visualizing results!")
17
+ # The MMPoseInferencer API employs a lazy inference approach,
18
+ # creating a prediction generator when given input
19
  result = next(result_generator)
20
+ print(result)
 
21
  return result['visualization']
22
 
23
  # # specify detection model by alias
 
31
  # )
32
 
33
  def run():
34
+ #https://github.com/open-mmlab/mmpose/blob/main/docs/en/user_guides/inference.md
35
  demo = gr.Interface(fn=greet,
36
  inputs=gr.Image(source="webcam"),
37
  outputs=gr.Image())