xmrt commited on
Commit
e527d19
·
1 Parent(s): a8d7fcb

batch true and queue true again

Browse files
Files changed (1) hide show
  1. main_noweb.py +36 -34
main_noweb.py CHANGED
@@ -103,6 +103,7 @@ def pose3d(video, kpt_threshold):
103
 
104
  os.makedirs(add_dir)
105
  print(check_fps(video))
 
106
  result_generator = human3d(video,
107
  vis_out_dir = add_dir,
108
  radius = 5,
@@ -221,43 +222,42 @@ def UI():
221
  gr.Code(
222
  value="""
223
 
224
- # Importing packages needed
225
- import json
226
- import numpy as np
227
-
228
- # First we load the data
229
- with open(file_path, 'r') as json_file:
230
- data = json.load(json_file)
231
-
232
- # The we define a function for calculating angles
233
- def calculate_angle(a, b, c):
234
- a = np.array(a) # First point
235
- b = np.array(b) # Middle point
236
- c = np.array(c) # End point
237
-
238
- radians = np.arctan2(c[1]-b[1], c[0]-b[0]) - np.arctan2(a[1]-b[1], a[0]-b[0])
239
- angle = np.abs(radians*180.0/np.pi)
240
-
241
- if angle >180.0:
242
- angle = 360-angle
243
-
244
- return angle
245
 
246
- # We select the first identified person in the first frame (zero index) as an example
247
- # To calculate the angle of the right elbow we take the point before and after and according to the indices that will be 6 (right shoulder) and 9 (right wrist)
248
- predictions = data['predictions'][0] # Assuming batch_size is 1
249
 
250
- # COCO keypoint indices
251
- shoulder_index = 6
252
- elbow_index = 8
253
- wrist_index = 9
254
 
255
- shoulder_point = data[0]['instances'][0]['keypoints'][shoulder_index]
256
- elbow_point = data[0]['instances'][0]['keypoints'][elbow_index]
257
- wrist_point = data[0]['instances'][0]['keypoints'][wrist_index]
 
 
258
 
259
- angle = calculate_angle(shoulder_point, elbow_point, wrist_point)
260
- print("Angle is: ", angle)
261
 
262
  """,
263
  language="python",
@@ -315,7 +315,9 @@ def UI():
315
  submit_pose3d_file.click(fn=pose3d,
316
  inputs= [video_input, file_kpthr],
317
  outputs = [video_output2, jsonoutput],
318
- queue=False)
 
 
319
 
320
  submit_hand_file.click(fn=pose2dhand,
321
  inputs= [video_input, file_kpthr],
 
103
 
104
  os.makedirs(add_dir)
105
  print(check_fps(video))
106
+ #video = human3d.preprocess(video, batch_size=8)
107
  result_generator = human3d(video,
108
  vis_out_dir = add_dir,
109
  radius = 5,
 
222
  gr.Code(
223
  value="""
224
 
225
+ # Importing packages needed
226
+ import json
227
+ import numpy as np
228
+
229
+ # First we load the data
230
+ with open(file_path, 'r') as json_file:
231
+ data = json.load(json_file)
232
+
233
+ # The we define a function for calculating angles
234
+ def calculate_angle(a, b, c):
235
+ a = np.array(a) # First point
236
+ b = np.array(b) # Middle point
237
+ c = np.array(c) # End point
238
+
239
+ radians = np.arctan2(c[1]-b[1], c[0]-b[0]) - np.arctan2(a[1]-b[1], a[0]-b[0])
240
+ angle = np.abs(radians*180.0/np.pi)
241
+
242
+ if angle >180.0:
243
+ angle = 360-angle
244
+
245
+ return angle
246
 
 
 
 
247
 
248
+ # COCO keypoint indices
249
+ shoulder_index = 6
250
+ elbow_index = 8
251
+ wrist_index = 9
252
 
253
+ # We select the first identified person in the first frame (zero index) as an example
254
+ # To calculate the angle of the right elbow we take the point before and after and according to the indices that will be 6 (right shoulder) and 9 (right wrist)
255
+ shoulder_point = data[0]['instances'][0]['keypoints'][shoulder_index]
256
+ elbow_point = data[0]['instances'][0]['keypoints'][elbow_index]
257
+ wrist_point = data[0]['instances'][0]['keypoints'][wrist_index]
258
 
259
+ angle = calculate_angle(shoulder_point, elbow_point, wrist_point)
260
+ print("Angle is: ", angle)
261
 
262
  """,
263
  language="python",
 
315
  submit_pose3d_file.click(fn=pose3d,
316
  inputs= [video_input, file_kpthr],
317
  outputs = [video_output2, jsonoutput],
318
+ batch=True,
319
+ max_batch_size=16,
320
+ queue=True)
321
 
322
  submit_hand_file.click(fn=pose2dhand,
323
  inputs= [video_input, file_kpthr],