File size: 3,557 Bytes
184fd64
 
 
 
 
 
 
 
99cb033
184fd64
afc99d3
184fd64
 
 
 
 
 
 
 
 
bd265e4
184fd64
b8bd0d3
184fd64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3d0d39
 
 
4109d5a
 
 
 
 
e3d0d39
 
0c5615e
e3d0d39
9108bc3
e3d0d39
 
 
 
 
9108bc3
e3d0d39
 
 
 
a302767
 
9108bc3
84bdcfc
 
 
 
 
 
 
 
9108bc3
e3d0d39
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import torch
import cv2
import gradio as gr
import numpy as np
import requests
from PIL import Image
from io import BytesIO
from transformers import OwlViTProcessor, OwlViTForObjectDetection
import os


# Use GPU if available
if torch.cuda.is_available():
    device = torch.device("cuda")
else:
    device = torch.device("cpu")

model = OwlViTForObjectDetection.from_pretrained("google/owlvit-large-patch14").to(device)
model.eval()
processor = OwlViTProcessor.from_pretrained("google/owlvit-large-patch14")
print(os.listdir())

def query_image(img, text_queries, score_threshold):
    text_queries = text_queries.split(",")

    img = np.array(img)

    target_sizes = torch.Tensor([img.shape[:2]])
    inputs = processor(text=text_queries, images=img, return_tensors="pt").to(device)

    with torch.no_grad():
        outputs = model(**inputs)

    outputs.logits = outputs.logits.cpu()
    outputs.pred_boxes = outputs.pred_boxes.cpu()
    results = processor.post_process(outputs=outputs, target_sizes=target_sizes)
    boxes, scores, labels = results[0]["boxes"], results[0]["scores"], results[0]["labels"]

    font = cv2.FONT_HERSHEY_SIMPLEX

    for box, score, label in zip(boxes, scores, labels):
        box = [int(i) for i in box.tolist()]

        if score >= score_threshold:
            img = cv2.rectangle(img, box[:2], box[2:], (255,0,0), 5)
            if box[3] + 25 > 768:
                y = box[3] - 10
            else:
                y = box[3] + 25

            img = cv2.putText(
                img, text_queries[label], (box[0], y), font, 1, (255,0,0), 2, cv2.LINE_AA
            )
    return img


with gr.Blocks() as demo:
    with gr.Column():            
        with gr.Tab("Upload image"):
            gr.Markdown(""" 
                        ### [OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit) is a vision transformer architecture that can be used for image inputs with text queries. This is achieved by adding a text embedding layer to the model, which allows it to process both image and text inputs.
                        ### \n You can use to query images with text descriptions of any object. To use it, simply upload an image or capture one with the webcam and enter comma separated text descriptions of objects you want to query the image for. 
                        ### \n You can also use the score threshold slider to set a threshold to filter out low probability predictions.
                        """)
            with gr.Row():
                with gr.Column():
                    inputs_file=[gr.Image(source="upload"), gr.Textbox(),  gr.Slider(0, 1, value=0.1)]
                    submit_btn = gr.Button("Submit")

                im_output = gr.Image()

        with gr.Tab("Capture image with webcam"):
            with gr.Row():
                with gr.Column():
                    inputs_web=[gr.Image(source="webcam"),  gr.Textbox(),  gr.Slider(0, 1, value=0.1)]
                    submit_btn_web = gr.Button("Submit")

                web_output = gr.Image()

    submit_btn.click(fn=query_image, inputs= inputs_file, outputs = im_output)
    submit_btn_web.click(fn=query_image, inputs= inputs_web, outputs = web_output)

    #gr.Markdown("## Image Examples")
    #examples= [os.path.join(os.path.dirname(__file__), "IMGP0178.jpg")]    
    #gr.Examples(postprocess=False,
    #              examples= examples, 
    #              inputs=[inputs_file], 
    #              outputs=[im_output], 
    #              fn=query_image
    #              )

demo.launch()