Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import json | |
| import argparse | |
| import os | |
| import copy | |
| import numpy as np | |
| import torch | |
| import torchvision | |
| from PIL import Image, ImageDraw, ImageFont | |
| import openai | |
| # Grounding DINO | |
| import GroundingDINO.groundingdino.datasets.transforms as T | |
| from GroundingDINO.groundingdino.models import build_model | |
| from GroundingDINO.groundingdino.util import box_ops | |
| from GroundingDINO.groundingdino.util.slconfig import SLConfig | |
| from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap | |
| from transformers import BlipProcessor, BlipForConditionalGeneration | |
| # segment anything | |
| from segment_anything import build_sam, SamPredictor | |
| from segment_anything.utils.amg import remove_small_regions | |
| import cv2 | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| # diffusers | |
| import PIL | |
| import requests | |
| import torch | |
| from io import BytesIO | |
| from huggingface_hub import hf_hub_download | |
| from sys import platform | |
| #macos | |
| if platform == 'darwin': | |
| import matplotlib | |
| matplotlib.use('agg') | |
| def load_model_hf(model_config_path, repo_id, filename, device='cpu'): | |
| args = SLConfig.fromfile(model_config_path) | |
| model = build_model(args) | |
| args.device = device | |
| cache_file = hf_hub_download(repo_id=repo_id, filename=filename) | |
| checkpoint = torch.load(cache_file, map_location='cpu') | |
| log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False) | |
| print("Model loaded from {} \n => {}".format(cache_file, log)) | |
| _ = model.eval() | |
| return model | |
| def plot_boxes_to_image(image_pil, tgt): | |
| H, W = tgt["size"] | |
| boxes = tgt["boxes"] | |
| labels = tgt["labels"] | |
| assert len(boxes) == len(labels), "boxes and labels must have same length" | |
| draw = ImageDraw.Draw(image_pil) | |
| mask = Image.new("L", image_pil.size, 0) | |
| mask_draw = ImageDraw.Draw(mask) | |
| # draw boxes and masks | |
| for box, label in zip(boxes, labels): | |
| # from 0..1 to 0..W, 0..H | |
| box = box * torch.Tensor([W, H, W, H]) | |
| # from xywh to xyxy | |
| box[:2] -= box[2:] / 2 | |
| box[2:] += box[:2] | |
| # random color | |
| color = tuple(np.random.randint(0, 255, size=3).tolist()) | |
| # draw | |
| x0, y0, x1, y1 = box | |
| x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1) | |
| draw.rectangle([x0, y0, x1, y1], outline=color, width=6) | |
| # draw.text((x0, y0), str(label), fill=color) | |
| font = ImageFont.load_default() | |
| if hasattr(font, "getbbox"): | |
| bbox = draw.textbbox((x0, y0), str(label), font) | |
| else: | |
| w, h = draw.textsize(str(label), font) | |
| bbox = (x0, y0, w + x0, y0 + h) | |
| # bbox = draw.textbbox((x0, y0), str(label)) | |
| draw.rectangle(bbox, fill=color) | |
| draw.text((x0, y0), str(label), fill="white") | |
| mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=6) | |
| return image_pil, mask | |
| def load_image(image_path): | |
| # # load image | |
| # image_pil = Image.open(image_path).convert("RGB") # load image | |
| image_pil = image_path | |
| transform = T.Compose( | |
| [ | |
| T.RandomResize([800], max_size=1333), | |
| T.ToTensor(), | |
| T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
| ] | |
| ) | |
| image, _ = transform(image_pil, None) # 3, h, w | |
| return image_pil, image | |
| def load_model(model_config_path, model_checkpoint_path, device): | |
| args = SLConfig.fromfile(model_config_path) | |
| args.device = device | |
| model = build_model(args) | |
| checkpoint = torch.load(model_checkpoint_path, map_location="cpu") | |
| load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False) | |
| _ = model.eval() | |
| return model | |
| def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"): | |
| caption = caption.lower() | |
| caption = caption.strip() | |
| if not caption.endswith("."): | |
| caption = caption + "." | |
| model = model.to(device) | |
| image = image.to(device) | |
| with torch.no_grad(): | |
| outputs = model(image[None], captions=[caption]) | |
| logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256) | |
| boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4) | |
| logits.shape[0] | |
| # filter output | |
| logits_filt = logits.clone() | |
| boxes_filt = boxes.clone() | |
| filt_mask = logits_filt.max(dim=1)[0] > box_threshold | |
| logits_filt = logits_filt[filt_mask] # num_filt, 256 | |
| boxes_filt = boxes_filt[filt_mask] # num_filt, 4 | |
| logits_filt.shape[0] | |
| # get phrase | |
| tokenlizer = model.tokenizer | |
| tokenized = tokenlizer(caption) | |
| # build pred | |
| pred_phrases = [] | |
| scores = [] | |
| for logit, box in zip(logits_filt, boxes_filt): | |
| pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer) | |
| if with_logits: | |
| pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})") | |
| else: | |
| pred_phrases.append(pred_phrase) | |
| scores.append(logit.max().item()) | |
| return boxes_filt, torch.Tensor(scores), pred_phrases | |
| def show_mask(mask, ax, random_color=False): | |
| if random_color: | |
| color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) | |
| else: | |
| color = np.array([30/255, 144/255, 255/255, 0.6]) | |
| h, w = mask.shape[-2:] | |
| mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) | |
| ax.imshow(mask_image) | |
| def save_mask_data(output_dir, mask_list, box_list, label_list): | |
| value = 0 # 0 for background | |
| mask_img = torch.zeros(mask_list.shape[-2:]) | |
| for idx, mask in enumerate(mask_list): | |
| mask_img[mask.cpu().numpy()[0] == True] = value + idx + 1 | |
| plt.figure(figsize=(10, 10)) | |
| plt.imshow(mask_img.numpy()) | |
| plt.axis('off') | |
| mask_img_path = os.path.join(output_dir, 'mask.jpg') | |
| plt.savefig(mask_img_path, bbox_inches="tight", dpi=300, pad_inches=0.0) | |
| json_data = [{ | |
| 'value': value, | |
| 'label': 'background' | |
| }] | |
| for label, box in zip(label_list, box_list): | |
| value += 1 | |
| name, logit = label.split('(') | |
| logit = logit[:-1] # the last is ')' | |
| json_data.append({ | |
| 'value': value, | |
| 'label': name, | |
| 'logit': float(logit), | |
| 'box': box.numpy().tolist(), | |
| }) | |
| mask_json_path = os.path.join(output_dir, 'mask.json') | |
| with open(mask_json_path, 'w') as f: | |
| json.dump(json_data, f) | |
| return mask_img_path, mask_json_path | |
| def show_box(box, ax, label): | |
| x0, y0 = box[0], box[1] | |
| w, h = box[2] - box[0], box[3] - box[1] | |
| ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2)) | |
| ax.text(x0, y0, label) | |
| config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py' | |
| ckpt_repo_id = "ShilongLiu/GroundingDINO" | |
| ckpt_filenmae = "groundingdino_swint_ogc.pth" | |
| sam_checkpoint='sam_vit_h_4b8939.pth' | |
| output_dir="outputs" | |
| device="cpu" | |
| processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") | |
| blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large") | |
| def generate_caption(raw_image): | |
| # unconditional image captioning | |
| inputs = processor(raw_image, return_tensors="pt") | |
| out = blip_model.generate(**inputs) | |
| caption = processor.decode(out[0], skip_special_tokens=True) | |
| return caption | |
| def generate_tags(caption, split=',', max_tokens=100, model="gpt-3.5-turbo", openai_key=''): | |
| openai.api_key = openai_key | |
| prompt = [ | |
| { | |
| 'role': 'system', | |
| 'content': 'Extract the unique nouns in the caption. Remove all the adjectives. ' + \ | |
| f'List the nouns in singular form. Split them by "{split} ". ' + \ | |
| f'Caption: {caption}.' | |
| } | |
| ] | |
| response = openai.ChatCompletion.create(model=model, messages=prompt, temperature=0.6, max_tokens=max_tokens) | |
| reply = response['choices'][0]['message']['content'] | |
| # sometimes return with "noun: xxx, xxx, xxx" | |
| tags = reply.split(':')[-1].strip() | |
| return tags | |
| def check_caption(caption, pred_phrases, max_tokens=100, model="gpt-3.5-turbo"): | |
| object_list = [obj.split('(')[0] for obj in pred_phrases] | |
| object_num = [] | |
| for obj in set(object_list): | |
| object_num.append(f'{object_list.count(obj)} {obj}') | |
| object_num = ', '.join(object_num) | |
| print(f"Correct object number: {object_num}") | |
| prompt = [ | |
| { | |
| 'role': 'system', | |
| 'content': 'Revise the number in the caption if it is wrong. ' + \ | |
| f'Caption: {caption}. ' + \ | |
| f'True object number: {object_num}. ' + \ | |
| 'Only give the revised caption: ' | |
| } | |
| ] | |
| response = openai.ChatCompletion.create(model=model, messages=prompt, temperature=0.6, max_tokens=max_tokens) | |
| reply = response['choices'][0]['message']['content'] | |
| # sometimes return with "Caption: xxx, xxx, xxx" | |
| caption = reply.split(':')[-1].strip() | |
| return caption | |
| def run_grounded_sam(image_path, openai_key, box_threshold, text_threshold, iou_threshold, area_threshold): | |
| assert openai_key, 'Openai key is not found!' | |
| # make dir | |
| os.makedirs(output_dir, exist_ok=True) | |
| # load image | |
| image_pil, image = load_image(image_path.convert("RGB")) | |
| # load model | |
| model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae) | |
| # visualize raw image | |
| image_pil.save(os.path.join(output_dir, "raw_image.jpg")) | |
| caption = generate_caption(image_pil) | |
| # Currently ", " is better for detecting single tags | |
| # while ". " is a little worse in some case | |
| split = ',' | |
| tags = generate_tags(caption, split=split, openai_key=openai_key) | |
| # run grounding dino model | |
| boxes_filt, scores, pred_phrases = get_grounding_output( | |
| model, image, tags, box_threshold, text_threshold, device=device | |
| ) | |
| size = image_pil.size | |
| # initialize SAM | |
| predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint)) | |
| image = np.array(image_path) | |
| predictor.set_image(image) | |
| H, W = size[1], size[0] | |
| for i in range(boxes_filt.size(0)): | |
| boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H]) | |
| boxes_filt[i][:2] -= boxes_filt[i][2:] / 2 | |
| boxes_filt[i][2:] += boxes_filt[i][:2] | |
| boxes_filt = boxes_filt.cpu() | |
| # use NMS to handle overlapped boxes | |
| print(f"Before NMS: {boxes_filt.shape[0]} boxes") | |
| nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist() | |
| boxes_filt = boxes_filt[nms_idx] | |
| pred_phrases = [pred_phrases[idx] for idx in nms_idx] | |
| print(f"After NMS: {boxes_filt.shape[0]} boxes") | |
| caption = check_caption(caption, pred_phrases) | |
| print(f"Revise caption with number: {caption}") | |
| transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]) | |
| masks, _, _ = predictor.predict_torch( | |
| point_coords = None, | |
| point_labels = None, | |
| boxes = transformed_boxes, | |
| multimask_output = False, | |
| ) | |
| # area threshold: remove the mask when area < area_thresh (in pixels) | |
| new_masks = [] | |
| for mask in masks: | |
| # reshape to be used in remove_small_regions() | |
| mask = mask.cpu().numpy().squeeze() | |
| mask, _ = remove_small_regions(mask, area_threshold, mode="holes") | |
| mask, _ = remove_small_regions(mask, area_threshold, mode="islands") | |
| new_masks.append(torch.as_tensor(mask).unsqueeze(0)) | |
| masks = torch.stack(new_masks, dim=0) | |
| # masks: [1, 1, 512, 512] | |
| assert sam_checkpoint, 'sam_checkpoint is not found!' | |
| # draw output image | |
| plt.figure(figsize=(10, 10)) | |
| plt.imshow(image) | |
| for mask in masks: | |
| show_mask(mask.cpu().numpy(), plt.gca(), random_color=True) | |
| for box, label in zip(boxes_filt, pred_phrases): | |
| show_box(box.numpy(), plt.gca(), label) | |
| plt.axis('off') | |
| image_path = os.path.join(output_dir, "grounding_dino_output.jpg") | |
| plt.savefig(image_path, bbox_inches="tight") | |
| image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB) | |
| mask_img_path, _ = save_mask_data('./outputs', masks, boxes_filt, pred_phrases) | |
| mask_img = cv2.cvtColor(cv2.imread(mask_img_path), cv2.COLOR_BGR2RGB) | |
| return image_result, mask_img, caption, tags | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True) | |
| parser.add_argument("--debug", action="store_true", help="using debug mode") | |
| parser.add_argument("--share", action="store_true", help="share the app") | |
| args = parser.parse_args() | |
| block = gr.Blocks().queue() | |
| with block: | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image(source='upload', type="pil") | |
| openai_key = gr.Textbox(label="OpenAI key") | |
| run_button = gr.Button(label="Run") | |
| with gr.Accordion("Advanced options", open=False): | |
| box_threshold = gr.Slider( | |
| label="Box Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.001 | |
| ) | |
| text_threshold = gr.Slider( | |
| label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001 | |
| ) | |
| iou_threshold = gr.Slider( | |
| label="IoU Threshold", minimum=0.0, maximum=1.0, value=0.5, step=0.001 | |
| ) | |
| area_threshold = gr.Slider( | |
| label="Area Threshold", minimum=0.0, maximum=2500, value=100, step=10 | |
| ) | |
| with gr.Column(): | |
| image_caption = gr.Textbox(label="Image Caption") | |
| identified_labels = gr.Textbox(label="Key objects extracted by ChatGPT") | |
| gallery = gr.outputs.Image( | |
| type="pil", | |
| ).style(full_width=True, full_height=True) | |
| mask_gallary = gr.outputs.Image( | |
| type="pil", | |
| ).style(full_width=True, full_height=True) | |
| run_button.click(fn=run_grounded_sam, inputs=[ | |
| input_image, openai_key, box_threshold, text_threshold, iou_threshold, area_threshold], | |
| outputs=[gallery, mask_gallary, image_caption, identified_labels]) | |
| block.launch(server_name='0.0.0.0', server_port=7589, debug=args.debug, share=args.share) |