|
|
|
|
|
|
|
import random |
|
import torch |
|
from torch.utils.data import Dataset |
|
from torch.utils.data import sampler |
|
|
|
import torchvision.transforms as transforms |
|
import six |
|
import sys |
|
from PIL import Image |
|
import numpy as np |
|
import os |
|
import sys |
|
import pickle |
|
import numpy as np |
|
from params import * |
|
import glob, cv2 |
|
import torchvision.transforms as transforms |
|
|
|
def crop_(input): |
|
image = Image.fromarray(input) |
|
image = image.convert('L') |
|
binary_image = image.point(lambda x: 0 if x > 127 else 255, '1') |
|
bbox = binary_image.getbbox() |
|
cropped_image = image.crop(bbox) |
|
return np.array(cropped_image) |
|
|
|
def get_transform(grayscale=False, convert=True): |
|
|
|
transform_list = [] |
|
if grayscale: |
|
transform_list.append(transforms.Grayscale(1)) |
|
|
|
if convert: |
|
transform_list += [transforms.ToTensor()] |
|
if grayscale: |
|
transform_list += [transforms.Normalize((0.5,), (0.5,))] |
|
else: |
|
transform_list += [transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] |
|
|
|
return transforms.Compose(transform_list) |
|
|
|
def load_itw_samples(folder_path, num_samples = 15): |
|
if isinstance(folder_path, str): |
|
paths = glob.glob(f'{folder_path}/*') |
|
else: |
|
paths = folder_path |
|
paths = np.random.choice(paths, num_samples, replace = len(paths)<=num_samples) |
|
|
|
words = [os.path.basename(path_i)[:-4] for path_i in paths] |
|
|
|
imgs = [np.array(Image.open(i).convert('L')) for i in paths] |
|
|
|
imgs = [crop_(im) for im in imgs] |
|
imgs = [cv2.resize(imgs_i, (int(32*(imgs_i.shape[1]/imgs_i.shape[0])), 32)) for imgs_i in imgs] |
|
max_width = 192 |
|
|
|
imgs_pad = [] |
|
imgs_wids = [] |
|
|
|
trans_fn = get_transform(grayscale=True) |
|
|
|
for img in imgs: |
|
|
|
img = 255 - img |
|
img_height, img_width = img.shape[0], img.shape[1] |
|
outImg = np.zeros(( img_height, max_width), dtype='float32') |
|
outImg[:, :img_width] = img[:, :max_width] |
|
|
|
img = 255 - outImg |
|
|
|
imgs_pad.append(trans_fn((Image.fromarray(img)))) |
|
imgs_wids.append(img_width) |
|
|
|
imgs_pad = torch.cat(imgs_pad, 0) |
|
|
|
return imgs_pad.unsqueeze(0), torch.Tensor(imgs_wids).unsqueeze(0) |
|
|
|
|
|
class TextDataset(): |
|
|
|
def __init__(self, base_path = DATASET_PATHS, num_examples = 15, target_transform=None): |
|
|
|
self.NUM_EXAMPLES = num_examples |
|
|
|
|
|
file_to_store = open(base_path, "rb") |
|
self.IMG_DATA = pickle.load(file_to_store)['train'] |
|
self.IMG_DATA = dict(list( self.IMG_DATA.items())) |
|
if 'None' in self.IMG_DATA.keys(): |
|
del self.IMG_DATA['None'] |
|
self.author_id = list(self.IMG_DATA.keys()) |
|
|
|
self.transform = get_transform(grayscale=True) |
|
self.target_transform = target_transform |
|
|
|
self.collate_fn = TextCollator() |
|
|
|
|
|
def __len__(self): |
|
return len(self.author_id) |
|
|
|
def __getitem__(self, index): |
|
|
|
|
|
|
|
NUM_SAMPLES = self.NUM_EXAMPLES |
|
|
|
|
|
author_id = self.author_id[index] |
|
|
|
self.IMG_DATA_AUTHOR = self.IMG_DATA[author_id] |
|
random_idxs = np.random.choice(len(self.IMG_DATA_AUTHOR), NUM_SAMPLES, replace = True) |
|
|
|
rand_id_real = np.random.choice(len(self.IMG_DATA_AUTHOR)) |
|
real_img = self.transform(self.IMG_DATA_AUTHOR[rand_id_real]['img'].convert('L')) |
|
real_labels = self.IMG_DATA_AUTHOR[rand_id_real]['label'].encode() |
|
|
|
imgs = [np.array(self.IMG_DATA_AUTHOR[idx]['img'].convert('L')) for idx in random_idxs] |
|
labels = [self.IMG_DATA_AUTHOR[idx]['label'].encode() for idx in random_idxs] |
|
|
|
max_width = 192 |
|
|
|
imgs_pad = [] |
|
imgs_wids = [] |
|
|
|
for img in imgs: |
|
|
|
img = 255 - img |
|
img_height, img_width = img.shape[0], img.shape[1] |
|
outImg = np.zeros(( img_height, max_width), dtype='float32') |
|
outImg[:, :img_width] = img[:, :max_width] |
|
|
|
img = 255 - outImg |
|
|
|
imgs_pad.append(self.transform((Image.fromarray(img)))) |
|
imgs_wids.append(img_width) |
|
|
|
imgs_pad = torch.cat(imgs_pad, 0) |
|
|
|
|
|
item = {'simg': imgs_pad, 'swids':imgs_wids, 'img' : real_img, 'label':real_labels,'img_path':'img_path', 'idx':'indexes', 'wcl':index} |
|
|
|
|
|
|
|
return item |
|
|
|
|
|
|
|
|
|
class TextDatasetval(): |
|
|
|
def __init__(self, base_path = DATASET_PATHS, num_examples = 15, target_transform=None): |
|
|
|
self.NUM_EXAMPLES = num_examples |
|
|
|
file_to_store = open(base_path, "rb") |
|
self.IMG_DATA = pickle.load(file_to_store)['test'] |
|
self.IMG_DATA = dict(list( self.IMG_DATA.items())) |
|
if 'None' in self.IMG_DATA.keys(): |
|
del self.IMG_DATA['None'] |
|
self.author_id = list(self.IMG_DATA.keys()) |
|
|
|
self.transform = get_transform(grayscale=True) |
|
self.target_transform = target_transform |
|
|
|
self.collate_fn = TextCollator() |
|
|
|
|
|
def __len__(self): |
|
return len(self.author_id) |
|
|
|
def __getitem__(self, index): |
|
|
|
NUM_SAMPLES = self.NUM_EXAMPLES |
|
|
|
author_id = self.author_id[index] |
|
|
|
self.IMG_DATA_AUTHOR = self.IMG_DATA[author_id] |
|
random_idxs = np.random.choice(len(self.IMG_DATA_AUTHOR), NUM_SAMPLES, replace = True) |
|
|
|
rand_id_real = np.random.choice(len(self.IMG_DATA_AUTHOR)) |
|
real_img = self.transform(self.IMG_DATA_AUTHOR[rand_id_real]['img'].convert('L')) |
|
real_labels = self.IMG_DATA_AUTHOR[rand_id_real]['label'].encode() |
|
|
|
|
|
imgs = [np.array(self.IMG_DATA_AUTHOR[idx]['img'].convert('L')) for idx in random_idxs] |
|
labels = [self.IMG_DATA_AUTHOR[idx]['label'].encode() for idx in random_idxs] |
|
|
|
max_width = 192 |
|
|
|
imgs_pad = [] |
|
imgs_wids = [] |
|
|
|
for img in imgs: |
|
|
|
img = 255 - img |
|
img_height, img_width = img.shape[0], img.shape[1] |
|
outImg = np.zeros(( img_height, max_width), dtype='float32') |
|
outImg[:, :img_width] = img[:, :max_width] |
|
|
|
img = 255 - outImg |
|
|
|
imgs_pad.append(self.transform((Image.fromarray(img)))) |
|
imgs_wids.append(img_width) |
|
|
|
imgs_pad = torch.cat(imgs_pad, 0) |
|
|
|
|
|
item = {'simg': imgs_pad, 'swids':imgs_wids, 'img' : real_img, 'label':real_labels,'img_path':'img_path', 'idx':'indexes', 'wcl':index} |
|
|
|
|
|
|
|
return item |
|
|
|
|
|
|
|
|
|
class TextCollator(object): |
|
def __init__(self): |
|
self.resolution = resolution |
|
|
|
def __call__(self, batch): |
|
|
|
img_path = [item['img_path'] for item in batch] |
|
width = [item['img'].shape[2] for item in batch] |
|
indexes = [item['idx'] for item in batch] |
|
simgs = torch.stack([item['simg'] for item in batch], 0) |
|
wcls = torch.Tensor([item['wcl'] for item in batch]) |
|
swids = torch.Tensor([item['swids'] for item in batch]) |
|
imgs = torch.ones([len(batch), batch[0]['img'].shape[0], batch[0]['img'].shape[1], max(width)], dtype=torch.float32) |
|
for idx, item in enumerate(batch): |
|
try: |
|
imgs[idx, :, :, 0:item['img'].shape[2]] = item['img'] |
|
except: |
|
print(imgs.shape) |
|
item = {'img': imgs, 'img_path':img_path, 'idx':indexes, 'simg': simgs, 'swids': swids, 'wcl':wcls} |
|
if 'label' in batch[0].keys(): |
|
labels = [item['label'] for item in batch] |
|
item['label'] = labels |
|
if 'z' in batch[0].keys(): |
|
z = torch.stack([item['z'] for item in batch]) |
|
item['z'] = z |
|
return item |
|
|
|
|