File size: 4,316 Bytes
795183d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
"""
Monitor the model download progress and provide helpful information
"""
import os
import time
from pathlib import Path
def check_huggingface_cache():
"""Check what's in the Hugging Face cache directory"""
cache_dir = Path.home() / ".cache" / "huggingface"
print(f"Checking cache directory: {cache_dir}")
if cache_dir.exists():
print("β
Cache directory exists")
# Check for transformers cache
transformers_cache = cache_dir / "transformers"
if transformers_cache.exists():
print("β
Transformers cache found")
# List cached models
for item in transformers_cache.iterdir():
if item.is_dir():
size = sum(f.stat().st_size for f in item.rglob('*') if f.is_file())
size_mb = size / (1024 * 1024)
print(f" π {item.name}: {size_mb:.1f} MB")
# Check for hub cache
hub_cache = cache_dir / "hub"
if hub_cache.exists():
print("β
Hub cache found")
total_size = 0
model_count = 0
for item in hub_cache.iterdir():
if item.is_dir() and "microsoft" in item.name.lower():
try:
size = sum(f.stat().st_size for f in item.rglob('*') if f.is_file())
size_mb = size / (1024 * 1024)
if size_mb > 1: # Only show models > 1MB
print(f" π {item.name}: {size_mb:.1f} MB")
total_size += size_mb
model_count += 1
except:
pass
if total_size > 0:
print(f"\nπ Total cached models: {model_count}")
print(f"π Total cache size: {total_size:.1f} MB")
if total_size > 1000: # > 1GB
print("β
Large model detected - TrOCR might be ready!")
else:
print("β Cache directory not found yet")
return cache_dir.exists()
def monitor_download():
"""Monitor the download progress"""
print("π DOWNLOAD MONITOR")
print("=" * 40)
print("Looking for model download activity...")
for i in range(30): # Check for 30 iterations
print(f"\nβ±οΈ Check #{i+1}/30:")
cache_exists = check_huggingface_cache()
if cache_exists:
print("π₯ Download activity detected!")
print("β³ Waiting 10 seconds before next check...")
time.sleep(10)
print("\nβ
Monitoring complete!")
def show_status():
"""Show current status"""
print("SINGTEL BILL SCANNER - STATUS CHECK")
print("=" * 50)
# Check Python environment
print("π Python Environment:")
print(f" Working directory: {os.getcwd()}")
# Check for test files
test_files = ["test_bill.png", "test_singtel_bill.png"]
print("\nπ Test Files:")
for file in test_files:
if os.path.exists(file):
size = os.path.getsize(file)
print(f" β
{file} ({size} bytes)")
else:
print(f" β {file} (not found)")
# Check cache
print("\nπ¦ Model Cache:")
check_huggingface_cache()
print("\nπ‘ What's happening:")
print(" - The TrOCR model is downloading in the background")
print(" - This is a one-time process (~1.3GB)")
print(" - Once complete, all future runs will be instant")
print(" - The model will be cached permanently")
if __name__ == "__main__":
import sys
if len(sys.argv) > 1 and sys.argv[1] == "monitor":
monitor_download()
else:
show_status()
choice = input("\nWould you like to monitor download progress? (y/n): ")
if choice.lower() in ['y', 'yes']:
monitor_download()
else:
print("\nπ‘ Tip: Run 'python monitor.py monitor' to watch progress")
print("The download will continue in the background.")
|