Spaces:
Runtime error
Runtime error
File size: 10,953 Bytes
25c1123 5269c7e 25c1123 eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 5269c7e eb85a42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
---
title: AI Data Analysis with SmoLagent
emoji: π€
colorFrom: purple
colorTo: green
sdk: gradio
sdk_version: 5.37.0
app_file: app.py
pinned: false
---
# Singtel Use Case 1: OutSystems Log Analysis with SmoLagent AI
An intelligent data analysis application specifically designed for analyzing OutSystems application logs using SmoLagent AI framework. This project focuses on extracting insights from 6 months of OutSystems log data to identify patterns, errors, and optimization opportunities.
## Features
π€ **AI-Powered Log Analysis**: Uses SmoLagent CodeAgent with DuckDuckGo search for intelligent log analysis
π **Interactive Visualizations**: Correlation heatmaps, distribution plots, and error pattern analysis
π **OutSystems-Specific Analytics**: Log level analysis, error module tracking, and performance insights
π **Multiple Interfaces**: Command-line, interactive menu, and web-based Gradio interface
π§ **Flexible AI Models**: OpenAI, Ollama (local), and HuggingFace Transformers support
π¨ **Error Pattern Detection**: Automated identification of error trends and module issues
## Quick Start
1. **Install Dependencies**
```bash
pip install -r requirements.txt
```
2. **Configure Your AI Model** (Choose one option)
**Option A: Free Local AI (Ollama)**
```bash
# Install Ollama from https://ollama.ai/
ollama pull llama2
ollama serve
python setup_ollama.py # Test setup
```
**Option B: OpenAI API**
```bash
set OPENAI_API_KEY=your_api_key_here
```
**Option C: Use without AI (basic analysis only)**
```bash
# No setup needed - basic data analysis works without AI
```
3. **Run the Application**
**Main Interactive Analysis:**
```bash
python upload.py
# Choose mode 2 for enhanced AI features
```
**Quick Demo:**
```bash
python quick_ai_demo.py
```
**Web Interface:**
```bash
python app.py
# Open browser to displayed URL
```
4. **Load Your OutSystems Data**
- Update file path in `upload.py` or `config.py`
- Default: `outsystems_sample_logs_6months.csv`
## Files Overview
### Main Scripts
- **`upload.py`** - Main data analysis script with interactive menu and AI integration
- **`app.py`** - Gradio web interface for browser-based analysis
- **`fixed_upload.py`** - Streamlined working version with automatic model fallbacks
### Setup & Testing Scripts
- **`setup_ollama.py`** - Ollama local AI setup helper
- **`setup_free_ai.py`** - Free AI models configuration
- **`test_smolagent.py`** - SmoLagent functionality testing
- **`quick_ai_demo.py`** - Quick demo without large downloads
### Configuration
- **`config.py`** - Model and data source configuration
- **`requirements.txt`** - Python dependencies
- **`ENHANCEMENT_GUIDE.md`** - Enhancement documentation
### Analysis Examples
- **`analyze.py`** - Programmatic analysis examples
- **`demo_enhanced.py`** - Enhanced features demonstration
## Model Configuration Options
### 1. Ollama (Recommended - Free & Local)
```python
from smolagents import CodeAgent, DuckDuckGoSearchTool, OllamaModel
model = OllamaModel(model_id="llama2", base_url="http://localhost:11434")
agent = CodeAgent(tools=[DuckDuckGoSearchTool()], model=model)
```
### 2. OpenAI Models
```python
from smolagents import CodeAgent, DuckDuckGoSearchTool, OpenAIModel
model = OpenAIModel(model_id="gpt-3.5-turbo")
agent = CodeAgent(tools=[DuckDuckGoSearchTool()], model=model)
```
### 3. HuggingFace Transformers
```python
from smolagents import CodeAgent, DuckDuckGoSearchTool, TransformersModel
model = TransformersModel(model_id="microsoft/DialoGPT-small")
agent = CodeAgent(tools=[DuckDuckGoSearchTool()], model=model)
```
## Usage Examples
### 1. Interactive Analysis (Recommended)
```bash
python upload.py
# Choose mode 2 for enhanced AI features
# Navigate through interactive menu:
# 1. Load and explore data
# 2. Create visualizations
# 3. Analyze data quality
# 4. AI-powered analysis
```
### 2. Quick Demo
```bash
python quick_ai_demo.py # Basic analysis without heavy downloads
```
### 3. Web Interface
```bash
python app.py # Start Gradio web interface
```
### 4. Automated Setup Testing
```bash
python test_smolagent.py # Test SmoLagent setup
python setup_free_ai.py # Configure free AI models
```
## OutSystems Log Analysis Features
### 1. Data Overview Tab
- **Dataset Structure**: 5000+ log entries with 9 columns
- **Column Analysis**: Timestamp, LogLevel, Module, User, Message, RequestUrl, SessionId, ErrorId, StackTrace
- **Missing Value Detection**: Identifies incomplete error records (ErrorId/StackTrace gaps)
- **Memory Usage**: Optimized for large log files
### 2. Log-Specific Analytics
- **Error Rate Analysis**: Info vs Error log distribution
- **Module Error Tracking**: Top error-generating modules identification
- **Session Analysis**: User session patterns and error correlation
- **Timestamp Patterns**: Time-based error trends and peak periods
### 3. Visualizations
- **Error Distribution Plots**: Visual error patterns across modules
- **Correlation Analysis**: Relationships between log parameters
- **Time Series Analysis**: Error trends over 6-month period
### 4. AI-Powered OutSystems Insights
- **Error Pattern Recognition**: AI identifies recurring error types
- **Module Risk Assessment**: Predicts which modules need attention
- **Performance Optimization**: Suggests improvements based on log patterns
- **Anomaly Detection**: Unusual log patterns and potential issues
## Example AI Queries for OutSystems Logs
Ask SmoLagent questions like:
**Error Analysis:**
- "What are the most common error types in these OutSystems logs?"
- "Which modules generate the most errors?"
- "Find patterns in error messages"
- "Identify critical errors that need immediate attention"
**Performance Insights:**
- "Analyze user session patterns for performance issues"
- "Find modules with the highest error rates"
- "Detect unusual activity patterns"
- "Suggest modules that need code review"
**Trend Analysis:**
- "Show error trends over the 6-month period"
- "Find seasonal patterns in system usage"
- "Identify peak error periods"
- "Correlate errors with specific time periods"
**Data Quality:**
- "Check for incomplete error records"
- "Find missing StackTrace patterns"
- "Validate log data completeness"
- "Suggest data quality improvements"
## Data Requirements
- **Format**: CSV format with OutSystems log structure
- **Expected Columns**: Timestamp, LogLevel, Module, User, Message, RequestUrl, SessionId, ErrorId, StackTrace
- **Default File**: `outsystems_sample_logs_6months.csv` (6 months of sample data)
- **File Location**: Update path in `upload.py` line 11 or `config.py`
- **Size**: Optimized for datasets with 5000+ log entries
- **Encoding**: UTF-8 encoding recommended
## Troubleshooting
### Common Issues:
1. **"Module not found: smolagents"**
```bash
pip install 'smolagents[transformers]'
pip install duckduckgo-search>=3.8.0
```
2. **"CodeAgent requires model parameter"**
- Run `python fixed_upload.py` for automatic model fallbacks
- Or configure Ollama: `python setup_ollama.py`
3. **Model Download Taking Too Long**
```bash
python quick_ai_demo.py # Use without heavy downloads
```
4. **OutSystems CSV File Not Found**
- Update file path in `upload.py` line 11
- Ensure CSV file exists at specified location
- Check file permissions
5. **Ollama Connection Error**
```bash
ollama serve # Start Ollama server
ollama pull llama2 # Download model
```
### Getting Help:
- **Quick Test**: Run `python test_smolagent.py`
- **Setup Issues**: Run `python setup_free_ai.py`
- **Basic Analysis**: Use Mode 1 in `upload.py` (works without AI)
- **Check Logs**: Console output shows detailed error messages
## Advanced Usage
### Custom Analysis Functions
You can extend the application by adding custom analysis functions:
```python
def custom_analysis(df):
# Your custom analysis logic here
return results
```
### Adding New Visualizations
Add new plotting functions to create additional visualizations:
```python
def create_custom_plot(df):
# Your plotting logic here
return plot_image
```
## Dependencies
**Core AI Framework:**
- `smolagents>=0.3.0` - AI agent framework with CodeAgent
- `duckduckgo-search>=3.8.0` - Web search capabilities
**Data Analysis Stack:**
- `pandas>=2.0.0` - Data manipulation and analysis
- `numpy>=1.24.0` - Numerical computing
- `scikit-learn>=1.3.0` - Machine learning tools
**Visualization:**
- `matplotlib>=3.7.0` - Basic plotting
- `seaborn>=0.12.0` - Statistical visualizations
- `plotly>=5.15.0` - Interactive visualizations
**AI Models:**
- `transformers>=4.30.0` - HuggingFace transformers
- `torch>=2.0.0` - PyTorch for model inference
- `huggingface_hub>=0.16.0` - Model hub access
**Web Interface:**
- `gradio>=5.37.0` - Web UI framework
- `Pillow>=10.0.0` - Image processing
**HTTP & Utilities:**
- `requests>=2.31.0` - HTTP requests
## Project Structure
```
Singtel_Use_Case1/
βββ π Main Scripts
β βββ upload.py # Primary interactive analysis tool
β βββ app.py # Gradio web interface
β βββ fixed_upload.py # Streamlined working version
β
βββ π Setup & Testing
β βββ setup_ollama.py # Ollama configuration helper
β βββ setup_free_ai.py # Free AI models setup
β βββ test_smolagent.py # SmoLagent testing
β βββ quick_ai_demo.py # Quick demo script
β
βββ π Configuration
β βββ config.py # Model and data configuration
β βββ requirements.txt # Python dependencies
β βββ ENHANCEMENT_GUIDE.md # Development guide
β
βββ π Analysis Examples
β βββ analyze.py # Programmatic analysis
β βββ demo_enhanced.py # Feature demonstrations
β
βββ π Data (Expected)
βββ outsystems_sample_logs_6months.csv
```
## License
This project is developed for Singtel Use Case 1 analysis and is available under the MIT License.
---
## Quick Commands Reference
```bash
# π Quick Start
python upload.py # Main interactive tool
python quick_ai_demo.py # Fast demo without downloads
python app.py # Web interface
# π§ Setup & Testing
python setup_ollama.py # Configure local AI
python test_smolagent.py # Test AI setup
python setup_free_ai.py # Free models setup
# π Analysis Options
# Mode 1: Basic data exploration (no AI required)
# Mode 2: Full AI-powered analysis with interactive menu
```
**For Singtel Use Case 1**: This tool specifically analyzes OutSystems log data to identify error patterns, module performance, and system optimization opportunities using AI-powered insights.
|