File size: 24,090 Bytes
5269c7e
 
c69ba8c
 
 
 
 
 
5269c7e
 
 
 
db6dcad
 
 
 
 
 
 
 
 
 
c69ba8c
 
 
 
 
 
 
db6dcad
 
 
c69ba8c
 
 
db6dcad
 
 
c69ba8c
db6dcad
c69ba8c
db6dcad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c69ba8c
 
 
 
db6dcad
 
c69ba8c
 
 
db6dcad
c69ba8c
db6dcad
c69ba8c
db6dcad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c69ba8c
db6dcad
c69ba8c
 
 
 
db6dcad
 
c69ba8c
 
db6dcad
 
c69ba8c
db6dcad
 
 
 
 
 
 
 
c69ba8c
 
 
db6dcad
c69ba8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db6dcad
 
c69ba8c
 
 
db6dcad
 
c69ba8c
 
 
 
 
 
db6dcad
 
 
c69ba8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db6dcad
 
c69ba8c
 
db6dcad
 
 
c69ba8c
 
 
db6dcad
 
c69ba8c
 
db6dcad
 
 
c69ba8c
db6dcad
c69ba8c
db6dcad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c69ba8c
 
 
db6dcad
 
 
 
c69ba8c
db6dcad
c69ba8c
 
 
db6dcad
 
 
 
 
c69ba8c
 
db6dcad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c69ba8c
 
db6dcad
 
 
c69ba8c
 
 
 
 
 
 
 
 
db6dcad
 
 
c69ba8c
db6dcad
c69ba8c
db6dcad
c69ba8c
 
 
 
 
 
 
 
db6dcad
 
 
 
c69ba8c
db6dcad
 
 
 
c69ba8c
db6dcad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c69ba8c
 
 
 
 
 
 
 
 
db6dcad
 
 
 
c69ba8c
 
 
 
 
5269c7e
c69ba8c
db6dcad
 
5269c7e
 
 
db6dcad
 
5269c7e
 
 
 
 
 
db6dcad
 
 
5269c7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c69ba8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
import pandas as pd
import os
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from smolagents import CodeAgent, DuckDuckGoSearchTool
import warnings
warnings.filterwarnings('ignore')

# Replace 'your_file.csv' with your CSV file path
csv_file_path = "C:/Users/Cosmo/Desktop/NTU Peak Singtel/outsystems_sample_logs_6months.csv"

def set_csv_file_path(new_path):
    """Update the CSV file path"""
    global csv_file_path
    csv_file_path = new_path
    print(f"βœ… CSV file path updated to: {csv_file_path}")

def get_csv_file_path():
    """Get the current CSV file path"""
    return csv_file_path

class EnhancedDataExplorer:
    """Enhanced data explorer with SmoLagent AI capabilities"""
    
    def __init__(self, csv_path=csv_file_path):
        self.csv_path = csv_path
        self.df = None
        self.agent = None
        print("πŸš€ Enhanced Data Explorer initialized!")
        print("πŸ’‘ AI setup will be done when first needed (option 4)")
        # Don't call setup_agent() here to avoid hanging
    
    def setup_agent(self):
        """Setup SmoLagent AI agent with simple configuration"""
        print("πŸ€– Setting up SmoLagent AI agent...")
        print("πŸ”„ Trying multiple model configurations...")
        
        try:
            # Try with Ollama using direct ollama package (fast and local)
            try:
                print("πŸ”„ Attempting Ollama setup...")
                import ollama
                # Quick test if Ollama is available (without generation test)
                models = ollama.list()
                if models and 'models' in models and len(models['models']) > 0:
                    print("βœ… Ollama is running and accessible!")
                    print(f"πŸ“¦ Found model: {models['models'][0].get('name', 'llama2')}")
                else:
                    raise Exception("No models found")
                
                # Create a custom model class for Ollama compatible with smolagents
                class OllamaModel:
                    def __init__(self, model_name="llama2"):
                        self.model_name = model_name
                        import ollama
                        self.ollama = ollama
                    
                    def __call__(self, messages, **kwargs):
                        try:
                            # Convert messages to Ollama format
                            if isinstance(messages, str):
                                prompt = messages
                            elif isinstance(messages, list):
                                # Handle different message formats
                                if len(messages) > 0 and isinstance(messages[0], dict):
                                    # Extract content from message dictionaries
                                    prompt = "\n".join([
                                        msg.get('content', str(msg)) if isinstance(msg, dict) else str(msg) 
                                        for msg in messages
                                    ])
                                else:
                                    prompt = "\n".join([str(msg) for msg in messages])
                            else:
                                prompt = str(messages)
                            
                            # Add timeout to prevent hanging
                            import signal
                            import time
                            
                            def timeout_handler(signum, frame):
                                raise TimeoutError("Ollama response timeout")
                            
                            # Set a 30-second timeout for Windows (using threading instead)
                            import threading
                            result = {'response': None, 'error': None}
                            
                            def generate_with_timeout():
                                try:
                                    response = self.ollama.generate(model=self.model_name, prompt=prompt)
                                    result['response'] = response['response']
                                except Exception as e:
                                    result['error'] = str(e)
                            
                            thread = threading.Thread(target=generate_with_timeout)
                            thread.daemon = True
                            thread.start()
                            thread.join(timeout=30)  # 30 second timeout
                            
                            if thread.is_alive():
                                return "Error: Ollama response timed out after 30 seconds. Try a simpler query."
                            elif result['error']:
                                return f"Error generating response with Ollama: {result['error']}"
                            elif result['response']:
                                return result['response']
                            else:
                                return "Error: No response received from Ollama"
                                
                        except Exception as e:
                            return f"Error generating response with Ollama: {e}"
                    
                    def generate(self, messages, **kwargs):
                        """Alternative method name that might be expected"""
                        return self.__call__(messages, **kwargs)
                
                model = OllamaModel("llama2")
                self.agent = CodeAgent(
                    tools=[DuckDuckGoSearchTool()],
                    model=model
                )
                print("βœ… SmoLagent configured successfully with Ollama!")
                print("πŸ’‘ Local AI model ready for analysis (with 30s timeout)")
                return
            except Exception as e:
                print(f"⚠️  Ollama setup failed: {e}")
                print("πŸ’‘ Make sure Ollama is running: ollama serve")
                
            # Try OpenAI if API key is available
            try:
                print("πŸ”„ Checking for OpenAI API key...")
                import os
                from smolagents import OpenAIModel
                if os.getenv('OPENAI_API_KEY'):
                    model = OpenAIModel(model_id="gpt-3.5-turbo")
                    self.agent = CodeAgent(
                        tools=[DuckDuckGoSearchTool()],
                        model=model
                    )
                    print("βœ… SmoLagent configured successfully with OpenAI!")
                    return
                else:
                    print("⚠️  OpenAI API key not found")
            except Exception as e:
                print(f"⚠️  OpenAI setup failed: {e}")
                
            # Fallback to Transformers model (smaller version)
            try:
                print("πŸ”„ Attempting HuggingFace Transformers model...")
                from smolagents import TransformersModel
                model = TransformersModel(model_id="microsoft/DialoGPT-small")  # Smaller model
                self.agent = CodeAgent(
                    tools=[DuckDuckGoSearchTool()],
                    model=model
                )
                print("βœ… SmoLagent configured successfully with HuggingFace model!")
                print("πŸ’‘ Note: First use may take time to download model")
                return
            except Exception as e:
                print(f"⚠️  HuggingFace setup failed: {e}")
                print("   Make sure transformers are installed: pip install 'smolagents[transformers]'")
            
            # If all models fail
            print("\n❌ No AI model could be configured.")
            print("πŸ“‹ To fix this:")
            print("   1. For local AI: Install Ollama and run 'ollama serve'")
            print("   2. For OpenAI: Set OPENAI_API_KEY environment variable")
            print("   3. For basic use: pip install 'smolagents[transformers]'")
            print("\nβœ… You can still use all non-AI features!")
            self.agent = None
        
        except Exception as e:
            print(f"⚠️  Agent setup failed: {e}")
            print("πŸ’‘ Try using: python fixed_upload.py")
            self.agent = None
    
    def configure_model_helper(self):
        """Helper function to guide model configuration"""
        print("\nπŸ€– AI Model Configuration Helper")
        print("=" * 40)
        print("1. OpenAI (Recommended - Most capable)")
        print("2. Ollama (Free - Runs locally)")
        print("3. Hugging Face (Free - API based)")
        print("4. Skip AI features")
        
        choice = input("Choose your model (1-4): ").strip()
        
        if choice == "1":
            print("\nπŸ“ OpenAI Setup:")
            print("1. Get API key from: https://platform.openai.com/")
            print("2. Set environment variable: OPENAI_API_KEY=your_key")
            print("3. Or edit the setup_agent() method with your key")
            
        elif choice == "2":
            print("\nπŸ“ Ollama Setup:")
            print("1. Install Ollama from: https://ollama.ai/")
            print("2. Run: ollama pull llama2")
            print("3. Start server: ollama serve")
            print("4. Script is already configured to use SmoLagents' native OllamaModel")
            print("5. Just make sure Ollama is running and try the AI analysis!")
            
        elif choice == "3":
            print("\nπŸ“ Hugging Face Setup:")
            print("1. Create account at: https://huggingface.co/")
            print("2. Get token from: https://huggingface.co/settings/tokens")
            print("3. Set environment variable: HF_TOKEN=your_token")
            print("4. Uncomment HF lines in setup_agent() method")
            
        elif choice == "4":
            print("βœ… You can still use all non-AI features!")
        
        print("\nπŸ’‘ Tip: Set environment variables in your system or use a .env file")
        return choice

    
    def load_data(self):
        """Load the CSV data (keeping your original functionality)"""
        print(f"\nπŸ“ Loading data from: {self.csv_path}")
        
        try:
            # Check if file exists
            if not os.path.exists(self.csv_path):
                print(f"❌ Error: File not found at {self.csv_path}")
                print("πŸ’‘ Use option 7 to change the file path")
                return None
            
            # Read the CSV file into a DataFrame
            self.df = pd.read_csv(self.csv_path)
            
            print("=== DATA LOADED SUCCESSFULLY ===")
            print(f"πŸ“ File: {os.path.basename(self.csv_path)}")
            print(f"πŸ“Š Dataset shape: {self.df.shape}")
            print(f"πŸ“‹ Columns: {list(self.df.columns)}")
            print("\n=== FIRST 5 ROWS ===")
            print(self.df.head())
            
            print("\n=== DATA TYPES ===")
            print(self.df.dtypes)
            
            print("\n=== MISSING VALUES ===")
            print(self.df.isnull().sum())
            
            print("\n=== BASIC STATISTICS ===")
            print(self.df.describe())
            
            return self.df
            
        except Exception as e:
            print(f"Error loading data: {str(e)}")
            return None
    
    def create_visualizations(self):
        """Create basic visualizations"""
        if self.df is None:
            print("❌ No data loaded. Run load_data() first.")
            return
        
        try:
            # Set up plotting style
            plt.style.use('seaborn-v0_8' if 'seaborn-v0_8' in plt.style.available else 'default')
            
            # Get numeric columns
            numeric_cols = self.df.select_dtypes(include=[np.number]).columns
            
            if len(numeric_cols) == 0:
                print("⚠️  No numeric columns found for visualization")
                return
            
            print(f"\n=== CREATING VISUALIZATIONS FOR {len(numeric_cols)} NUMERIC COLUMNS ===")
            
            # 1. Distribution plots
            n_cols = min(3, len(numeric_cols))
            n_rows = (len(numeric_cols) + n_cols - 1) // n_cols
            
            plt.figure(figsize=(15, 5*n_rows))
            for i, col in enumerate(numeric_cols):
                plt.subplot(n_rows, n_cols, i+1)
                self.df[col].hist(bins=30, alpha=0.7, edgecolor='black')
                plt.title(f'Distribution of {col}')
                plt.xlabel(col)
                plt.ylabel('Frequency')
            
            plt.tight_layout()
            plt.savefig('data_distributions.png', dpi=300, bbox_inches='tight')
            plt.show()
            print("βœ… Distribution plots saved as 'data_distributions.png'")
            
            # 2. Correlation heatmap (if more than 1 numeric column)
            if len(numeric_cols) > 1:
                plt.figure(figsize=(12, 8))
                correlation_matrix = self.df[numeric_cols].corr()
                sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', center=0, 
                           square=True, linewidths=0.5)
                plt.title('Correlation Heatmap')
                plt.tight_layout()
                plt.savefig('correlation_heatmap.png', dpi=300, bbox_inches='tight')
                plt.show()
                print("βœ… Correlation heatmap saved as 'correlation_heatmap.png'")
            
        except Exception as e:
            print(f"❌ Error creating visualizations: {e}")
    
    def analyze_data_quality(self):
        """Analyze data quality issues"""
        if self.df is None:
            print("❌ No data loaded. Run load_data() first.")
            return
        
        print("\n=== DATA QUALITY ANALYSIS ===")
        
        # Missing data analysis
        missing_data = self.df.isnull().sum()
        missing_percentage = (missing_data / len(self.df)) * 100
        
        quality_report = pd.DataFrame({
            'Column': self.df.columns,
            'Missing_Count': missing_data.values,
            'Missing_Percentage': missing_percentage.values,
            'Data_Type': self.df.dtypes.values
        })
        
        print("Missing Data Summary:")
        print(quality_report[quality_report['Missing_Count'] > 0])
        
        # Duplicate rows
        duplicates = self.df.duplicated().sum()
        print(f"\nDuplicate rows: {duplicates}")
        
        # Memory usage
        memory_usage = self.df.memory_usage(deep=True).sum() / 1024**2
        print(f"Memory usage: {memory_usage:.2f} MB")
        
        return quality_report
    
    def ai_analysis(self, query):
        """Use SmoLagent for AI-powered analysis"""
        print(f"\nπŸ” Checking prerequisites for AI analysis...")
        
        if self.agent is None:
            print("❌ AI agent not configured. Please set up SmoLagent first.")
            print("πŸ’‘ Try running one of these alternatives:")
            print("   β€’ python fixed_upload.py")
            print("   β€’ python quick_ai_demo.py")
            return
        
        if self.df is None:
            print("❌ No data loaded. Please load data first!")
            print("πŸ’‘ Choose option 1 in the main menu to load your data.")
            return
        
        print("βœ… Data loaded successfully")
        print("βœ… AI agent configured")
        print(f"βœ… Processing query: '{query}'")
        
        # Prepare context about the dataset
        try:
            data_context = f"""
            Dataset Analysis Request:
            - Dataset Shape: {self.df.shape}
            - Columns: {list(self.df.columns)}
            - Data Types: {dict(self.df.dtypes)}
            - Missing Values: {dict(self.df.isnull().sum())}
            
            Sample Data:
            {self.df.head(3).to_string()}
            
            Statistical Summary:
            {self.df.describe().to_string()}
            
            User Question: {query}
            """
            
            print(f"\nπŸ€– SmoLagent is analyzing your data...")
            print("⏳ This may take 5-15 seconds...")
            
            # Use the agent with the data context and query
            response = self.agent.run(data_context)
            
            print("\n" + "="*60)
            print("βœ… AI ANALYSIS COMPLETE")
            print("="*60)
            print(response)
            print("="*60)
            return response
            
        except Exception as e:
            print(f"\n❌ AI analysis failed: {e}")
            print("\nπŸ’‘ Troubleshooting suggestions:")
            print("   β€’ Check your internet connection")
            print("   β€’ Try: python fixed_upload.py")
            print("   β€’ Use basic analysis features (options 2-3)")
            return None
    
    def check_status(self):
        """Check the status of data and AI setup"""
        print("\nπŸ” SYSTEM STATUS CHECK")
        print("="*40)
        
        # Check file path
        print(f"πŸ“ CSV File: {self.csv_path}")
        if os.path.exists(self.csv_path):
            print(f"βœ… File exists: {os.path.basename(self.csv_path)}")
        else:
            print(f"❌ File not found")
            
        # Check data status
        if self.df is not None:
            print(f"βœ… Data loaded: {self.df.shape[0]} rows, {self.df.shape[1]} columns")
            print(f"πŸ“‹ Columns: {list(self.df.columns)}")
        else:
            print("❌ No data loaded")
            
        # Check AI agent status
        if self.agent is not None:
            print("βœ… AI agent configured and ready")
        else:
            print("❌ AI agent not configured")
            
        print("="*40)
    
    def change_csv_file(self, new_path=None):
        """Change the CSV file path"""
        if new_path is None:
            print(f"\nπŸ“ Current file path: {self.csv_path}")
            new_path = input("Enter new CSV file path: ").strip()
        
        if os.path.exists(new_path):
            self.csv_path = new_path
            self.df = None  # Clear current data
            print(f"βœ… CSV file path updated to: {self.csv_path}")
            print("πŸ’‘ Data cleared. Use option 1 to load the new file.")
        else:
            print(f"❌ File not found: {new_path}")
            print("πŸ’‘ Please check the file path and try again.")
    
    def interactive_menu(self):
        """Interactive menu for data exploration"""
        # Show initial status
        self.check_status()
        
        while True:
            print("\n" + "="*50)
            print("πŸ€– ENHANCED DATA EXPLORER WITH AI")
            print("="*50)
            print("1. Load and explore data")
            print("2. Create visualizations")
            print("3. Analyze data quality")
            print("4. AI-powered analysis")
            print("5. Show data summary")
            print("6. Check system status")
            print("7. Change CSV file path")
            print("8. Exit")
            print("="*50)
            print(f"πŸ“ Current file: {os.path.basename(self.csv_path)}")
            
            choice = input("Enter your choice (1-8): ").strip()
            
            if choice == '1':
                self.load_data()
            elif choice == '2':
                self.create_visualizations()
            elif choice == '3':
                self.analyze_data_quality()
            elif choice == '4':
                if self.df is None:
                    print("\n❌ No data loaded. Please load data first!")
                    print("πŸ’‘ Choose option 1 to load your data before using AI analysis.")
                    input("\nPress Enter to continue...")
                else:
                    # Setup AI on demand if not already done
                    if self.agent is None:
                        print("\nπŸ€– Setting up AI for first use...")
                        self.setup_agent()
                    
                    if self.agent is None:
                        print("\n❌ AI features not available. Please configure a model first.")
                        print("Edit the setup_agent() method to add your API keys.")
                        self.configure_model_helper()
                    else:
                        print("\nπŸ€– AI Analysis - Ask me anything about your data!")
                        print("Example queries:")
                        print("  β€’ 'What are the main trends in this data?'")
                        print("  β€’ 'Find any outliers or anomalies'")
                        print("  β€’ 'Suggest data quality improvements'")
                        print("  β€’ 'Perform correlation analysis'")
                        print("  β€’ 'Identify seasonal patterns'")
                        print("  β€’ 'Recommend preprocessing steps'")
                        
                        query = input("\nπŸ’¬ Your question: ").strip()
                        if query:
                            self.ai_analysis(query)
                            # Wait for user to read the results before returning to menu
                            input("\nπŸ“‹ Press Enter to return to main menu...")
                        else:
                            print("❌ No question entered.")
                            input("\nPress Enter to continue...")
            elif choice == '5':
                if self.df is not None:
                    print(f"\nπŸ“Š Dataset Summary:")
                    print(f"Shape: {self.df.shape}")
                    print(f"Columns: {list(self.df.columns)}")
                    print(f"Memory: {self.df.memory_usage(deep=True).sum() / 1024**2:.2f} MB")
                else:
                    print("❌ No data loaded.")
            elif choice == '6':
                self.check_status()
            elif choice == '7':
                self.change_csv_file()
            elif choice == '8':
                print("πŸ‘‹ Goodbye!")
                break
            else:
                print("❌ Invalid choice. Please try again.")

def load_and_explore_data():
    """Load and explore the CSV data (keeping your original function)"""
    print(f"\nπŸ“ Loading data from: {csv_file_path}")
    
    try:
        # Check if file exists
        if not os.path.exists(csv_file_path):
            print(f"❌ Error: File not found at {csv_file_path}")
            print("πŸ’‘ Update the csv_file_path variable at the top of this file")
            return None
        
        # Read the CSV file into a DataFrame
        df = pd.read_csv(csv_file_path)
        
        print("=== DATA LOADED SUCCESSFULLY ===")
        print(f"πŸ“ File: {os.path.basename(csv_file_path)}")
        print(f"πŸ“Š Dataset shape: {df.shape}")
        print(f"πŸ“‹ Columns: {list(df.columns)}")
        print("\n=== FIRST 5 ROWS ===")
        print(df.head())
        
        print("\n=== DATA TYPES ===")
        print(df.dtypes)
        
        print("\n=== MISSING VALUES ===")
        print(df.isnull().sum())
        
        print("\n=== BASIC STATISTICS ===")
        print(df.describe())
        
        return df
        
    except Exception as e:
        print(f"Error loading data: {str(e)}")
        return None

if __name__ == "__main__":
    print("πŸš€ Enhanced Data Explorer with SmoLagent AI")
    print("Choose your preferred mode:")
    print("1. Original function (load_and_explore_data)")
    print("2. Enhanced interactive mode with AI")
    
    mode = input("Enter mode (1 or 2): ").strip()
    
    if mode == "1":
        # Run your original function
        df = load_and_explore_data()
    elif mode == "2":
        # Run enhanced mode with AI capabilities
        explorer = EnhancedDataExplorer()
        explorer.interactive_menu()
    else:
        print("Invalid choice. Running original function...")
        df = load_and_explore_data()