File size: 18,812 Bytes
745eaaf f54e7d4 226c7c9 745eaaf 226c7c9 745eaaf f54e7d4 6d7fc1c 4953ce6 817cd1e f54e7d4 e22a639 745eaaf f54e7d4 745eaaf f54e7d4 e22a639 32a4d55 e22a639 226c7c9 32a4d55 e22a639 f54e7d4 e22a639 f54e7d4 17d970d f54e7d4 17d970d f54e7d4 17d970d f54e7d4 17d970d f54e7d4 745eaaf 6d7fc1c f54e7d4 16293fe f54e7d4 74308ee f54e7d4 745eaaf f54e7d4 226c7c9 745eaaf 5559672 817cd1e 226c7c9 817cd1e f54e7d4 16293fe 17c2360 f54e7d4 817cd1e 745eaaf 817cd1e 74308ee 17d970d 817cd1e 226c7c9 f54e7d4 817cd1e 4953ce6 817cd1e f54e7d4 745eaaf f54e7d4 16293fe f54e7d4 6d7fc1c f54e7d4 6d7fc1c f54e7d4 6d7fc1c f54e7d4 74308ee f54e7d4 745eaaf f54e7d4 17d970d 74308ee 17d970d f54e7d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
import datetime
import os
import sys
import tempfile
import time
import zipfile
from typing import List, Tuple
import gradio as gr
import spaces
from gpu_info import stop_watcher, watch_gpu_memory
PWD = os.path.dirname(__file__)
CHECKPOINTS_PATH = "/data/checkpoints"
LOG_DIR = os.path.join(PWD, "logs")
os.makedirs(LOG_DIR, exist_ok=True)
try:
import os
from huggingface_hub import login
# Try to login with token from environment variable
hf_token = os.environ["HF_TOKEN"]
if hf_token:
login(token=hf_token)
print("✅ Authenticated with Hugging Face")
else:
print("No HF_TOKEN found, trying without authentication...")
except Exception as e:
print(f"Authentication failed: {e}")
# download checkpoints
from download_checkpoints import main as download_checkpoints
os.makedirs(CHECKPOINTS_PATH, exist_ok=True)
download_checkpoints(hf_token="", output_dir=CHECKPOINTS_PATH, model="7b_av")
from test_environment import main as check_environment
from test_environment import setup_environment
setup_environment()
# setup env
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["LD_LIBRARY_PATH"] = "$CUDA_HOME/lib:$CUDA_HOME/lib64:$LD_LIBRARY_PATH"
os.environ["PATH"] = "$CUDA_HOME/bin:/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:$PATH"
if not check_environment():
sys.exit(1)
os.environ["TOKENIZERS_PARALLELISM"] = "false" # Workaround to suppress MP warning
import copy
import json
import random
from io import BytesIO
import torch
from cosmos_transfer1.checkpoints import (
BASE_7B_CHECKPOINT_AV_SAMPLE_PATH,
BASE_7B_CHECKPOINT_PATH,
EDGE2WORLD_CONTROLNET_DISTILLED_CHECKPOINT_PATH,
)
from cosmos_transfer1.diffusion.inference.inference_utils import (
validate_controlnet_specs,
)
from cosmos_transfer1.diffusion.inference.preprocessors import Preprocessors
from cosmos_transfer1.diffusion.inference.world_generation_pipeline import (
DiffusionControl2WorldGenerationPipeline,
DistilledControl2WorldGenerationPipeline,
)
from cosmos_transfer1.utils import log, misc
from cosmos_transfer1.utils.io import read_prompts_from_file, save_video
from helper import parse_arguments
torch.enable_grad(False)
torch.serialization.add_safe_globals([BytesIO])
def inference(cfg, control_inputs, chunking) -> Tuple[List[str], List[str]]:
video_paths = []
prompt_paths = []
control_inputs = validate_controlnet_specs(cfg, control_inputs)
misc.set_random_seed(cfg.seed)
device_rank = 0
process_group = None
if cfg.num_gpus > 1:
from megatron.core import parallel_state
from cosmos_transfer1.utils import distributed
distributed.init()
parallel_state.initialize_model_parallel(context_parallel_size=cfg.num_gpus)
process_group = parallel_state.get_context_parallel_group()
device_rank = distributed.get_rank(process_group)
preprocessors = Preprocessors()
if cfg.use_distilled:
assert not cfg.is_av_sample
checkpoint = EDGE2WORLD_CONTROLNET_DISTILLED_CHECKPOINT_PATH
pipeline = DistilledControl2WorldGenerationPipeline(
checkpoint_dir=cfg.checkpoint_dir,
checkpoint_name=checkpoint,
offload_network=cfg.offload_diffusion_transformer,
offload_text_encoder_model=cfg.offload_text_encoder_model,
offload_guardrail_models=cfg.offload_guardrail_models,
guidance=cfg.guidance,
num_steps=cfg.num_steps,
fps=cfg.fps,
seed=cfg.seed,
num_input_frames=cfg.num_input_frames,
control_inputs=control_inputs,
sigma_max=cfg.sigma_max,
blur_strength=cfg.blur_strength,
canny_threshold=cfg.canny_threshold,
upsample_prompt=cfg.upsample_prompt,
offload_prompt_upsampler=cfg.offload_prompt_upsampler,
process_group=process_group,
)
else:
checkpoint = BASE_7B_CHECKPOINT_AV_SAMPLE_PATH if cfg.is_av_sample else BASE_7B_CHECKPOINT_PATH
# Initialize transfer generation model pipeline
pipeline = DiffusionControl2WorldGenerationPipeline(
checkpoint_dir=cfg.checkpoint_dir,
checkpoint_name=checkpoint,
offload_network=cfg.offload_diffusion_transformer,
offload_text_encoder_model=cfg.offload_text_encoder_model,
offload_guardrail_models=cfg.offload_guardrail_models,
guidance=cfg.guidance,
num_steps=cfg.num_steps,
fps=cfg.fps,
seed=cfg.seed,
num_input_frames=cfg.num_input_frames,
control_inputs=control_inputs,
sigma_max=cfg.sigma_max,
blur_strength=cfg.blur_strength,
canny_threshold=cfg.canny_threshold,
upsample_prompt=cfg.upsample_prompt,
offload_prompt_upsampler=cfg.offload_prompt_upsampler,
process_group=process_group,
chunking=chunking,
)
if cfg.batch_input_path:
log.info(f"Reading batch inputs from path: {cfg.batch_input_path}")
prompts = read_prompts_from_file(cfg.batch_input_path)
else:
# Single prompt case
prompts = [{"prompt": cfg.prompt, "visual_input": cfg.input_video_path}]
batch_size = cfg.batch_size if hasattr(cfg, "batch_size") else 1
if any("upscale" in control_input for control_input in control_inputs) and batch_size > 1:
batch_size = 1
log.info("Setting batch_size=1 as upscale does not support batch generation")
os.makedirs(cfg.video_save_folder, exist_ok=True)
for batch_start in range(0, len(prompts), batch_size):
# Get current batch
batch_prompts = prompts[batch_start : batch_start + batch_size]
actual_batch_size = len(batch_prompts)
# Extract batch data
batch_prompt_texts = [p.get("prompt", None) for p in batch_prompts]
batch_video_paths = [p.get("visual_input", None) for p in batch_prompts]
batch_control_inputs = []
for i, input_dict in enumerate(batch_prompts):
current_prompt = input_dict.get("prompt", None)
current_video_path = input_dict.get("visual_input", None)
if cfg.batch_input_path:
video_save_subfolder = os.path.join(cfg.video_save_folder, f"video_{batch_start+i}")
os.makedirs(video_save_subfolder, exist_ok=True)
else:
video_save_subfolder = cfg.video_save_folder
current_control_inputs = copy.deepcopy(control_inputs)
if "control_overrides" in input_dict:
for hint_key, override in input_dict["control_overrides"].items():
if hint_key in current_control_inputs:
current_control_inputs[hint_key].update(override)
else:
log.warning(f"Ignoring unknown control key in override: {hint_key}")
# if control inputs are not provided, run respective preprocessor (for seg and depth)
log.info("running preprocessor")
preprocessors(
current_video_path,
current_prompt,
current_control_inputs,
video_save_subfolder,
cfg.regional_prompts if hasattr(cfg, "regional_prompts") else None,
)
batch_control_inputs.append(current_control_inputs)
regional_prompts = []
region_definitions = []
if hasattr(cfg, "regional_prompts") and cfg.regional_prompts:
log.info(f"regional_prompts: {cfg.regional_prompts}")
for regional_prompt in cfg.regional_prompts:
regional_prompts.append(regional_prompt["prompt"])
if "region_definitions_path" in regional_prompt:
log.info(f"region_definitions_path: {regional_prompt['region_definitions_path']}")
region_definition_path = regional_prompt["region_definitions_path"]
if isinstance(region_definition_path, str) and region_definition_path.endswith(".json"):
with open(region_definition_path, "r") as f:
region_definitions_json = json.load(f)
region_definitions.extend(region_definitions_json)
else:
region_definitions.append(region_definition_path)
if hasattr(pipeline, "regional_prompts"):
pipeline.regional_prompts = regional_prompts
if hasattr(pipeline, "region_definitions"):
pipeline.region_definitions = region_definitions
# Generate videos in batch
batch_outputs = pipeline.generate(
prompt=batch_prompt_texts,
video_path=batch_video_paths,
negative_prompt=cfg.negative_prompt,
control_inputs=batch_control_inputs,
save_folder=video_save_subfolder,
batch_size=actual_batch_size,
)
if batch_outputs is None:
log.critical("Guardrail blocked generation for entire batch.")
continue
videos, final_prompts = batch_outputs
for i, (video, prompt) in enumerate(zip(videos, final_prompts)):
if cfg.batch_input_path:
video_save_subfolder = os.path.join(cfg.video_save_folder, f"video_{batch_start+i}")
video_save_path = os.path.join(video_save_subfolder, "output.mp4")
prompt_save_path = os.path.join(video_save_subfolder, "prompt.txt")
else:
video_save_path = os.path.join(cfg.video_save_folder, f"{cfg.video_save_name}.mp4")
prompt_save_path = os.path.join(cfg.video_save_folder, f"{cfg.video_save_name}.txt")
# Save video and prompt
if device_rank == 0:
os.makedirs(os.path.dirname(video_save_path), exist_ok=True)
save_video(
video=video,
fps=cfg.fps,
H=video.shape[1],
W=video.shape[2],
video_save_quality=5,
video_save_path=video_save_path,
)
video_paths.append(video_save_path)
# Save prompt to text file alongside video
with open(prompt_save_path, "wb") as f:
f.write(prompt.encode("utf-8"))
prompt_paths.append(prompt_save_path)
log.info(f"Saved video to {video_save_path}")
log.info(f"Saved prompt to {prompt_save_path}")
# clean up properly
if cfg.num_gpus > 1:
parallel_state.destroy_model_parallel()
import torch.distributed as dist
dist.destroy_process_group()
return video_paths, prompt_paths
def create_zip_for_download(filename, files_to_zip):
temp_dir = tempfile.mkdtemp()
zip_path = os.path.join(temp_dir, f"{os.path.splitext(filename)[0]}.zip")
with zipfile.ZipFile(zip_path, "w", zipfile.ZIP_DEFLATED) as zipf:
for file_path in files_to_zip:
arcname = os.path.basename(file_path)
zipf.write(file_path, arcname)
return zip_path
@spaces.GPU()
def generate_video(
rgb_video_path,
hdmap_video_input,
lidar_video_input,
prompt,
negative_prompt="The video captures a series of frames showing ugly scenes, static with no motion, motion blur, over-saturation, shaky footage, low resolution, grainy texture, pixelated images, poorly lit areas, underexposed and overexposed scenes, poor color balance, washed out colors, choppy sequences, jerky movements, low frame rate, artifacting, color banding, unnatural transitions, outdated special effects, fake elements, unconvincing visuals, poorly edited content, jump cuts, visual noise, and flickering. Overall, the video is of poor quality.", # noqa: E501
seed=42,
randomize_seed=False,
chunking=None,
progress=gr.Progress(track_tqdm=True),
):
_dt = datetime.datetime.now(tz=datetime.timezone(datetime.timedelta(hours=8))).strftime("%Y-%m-%d_%H.%M.%S")
logfile_path = os.path.join(LOG_DIR, f"{_dt}.log")
log_handler = log.init_dev_loguru_file(logfile_path)
if randomize_seed:
actual_seed = random.randint(0, 1000000)
else:
actual_seed = seed
log.info(f"actual_seed: {actual_seed}")
if rgb_video_path is None or not os.path.isfile(rgb_video_path):
log.warning(f"File `{rgb_video_path}` does not exist")
rgb_video_path = ""
# add timer to calculate the generation time
start_time = time.time()
# parse generation configs
args, control_inputs = parse_arguments(
controlnet_specs_in={
"hdmap": {"control_weight": 0.3, "input_control": hdmap_video_input},
"lidar": {"control_weight": 0.7, "input_control": lidar_video_input},
},
input_video_path=rgb_video_path,
checkpoint_dir=CHECKPOINTS_PATH,
prompt=prompt,
negative_prompt=negative_prompt,
sigma_max=80,
offload_text_encoder_model=True,
is_av_sample=True,
num_gpus=1,
seed=seed,
)
# watch gpu memory
watcher = watch_gpu_memory(10, lambda x: log.debug(f"GPU memory usage: {x} (MiB)"))
# start inference
if chunking <= 0:
chunking = None
videos, prompts = inference(args, control_inputs, chunking)
# print the generation time
end_time = time.time()
log.info(f"Time taken: {end_time - start_time} s")
# stop the watcher
stop_watcher()
video = videos[0]
log.logger.remove(log_handler)
return video, create_zip_for_download(filename=logfile_path, files_to_zip=[video, logfile_path]), actual_seed
# Define the Gradio Blocks interface
with gr.Blocks() as demo:
gr.Markdown(
"""
# Cosmos-Transfer1-7B-Sample-AV
"""
)
with gr.Row():
with gr.Column():
rgb_video_input = gr.Video(label="Input RGB Video", format="mp4")
hdmap_input = gr.Video(label="Input HD Map Video", format="mp4")
lidar_input = gr.Video(label="Input LiDAR Video", format="mp4")
prompt_input = gr.Textbox(
label="Prompt",
lines=5,
# value="A close-up shot captures a vibrant yellow scrubber vigorously working on a grimy plate, its bristles moving in circular motions to lift stubborn grease and food residue. The dish, once covered in remnants of a hearty meal, gradually reveals its original glossy surface. Suds form and bubble around the scrubber, creating a satisfying visual of cleanliness in progress. The sound of scrubbing fills the air, accompanied by the gentle clinking of the dish against the sink. As the scrubber continues its task, the dish transforms, gleaming under the bright kitchen lights, symbolizing the triumph of cleanliness over mess.", # noqa: E501
value="The video is captured from a camera mounted on a car. The camera is facing forward. The video showcases a scenic golden-hour drive through a suburban area, bathed in the warm, golden hues of the setting sun. The dashboard camera captures the play of light and shadow as the sun’s rays filter through the trees, casting elongated patterns onto the road. The streetlights remain off, as the golden glow of the late afternoon sun provides ample illumination. The two-lane road appears to shimmer under the soft light, while the concrete barrier on the left side of the road reflects subtle warm tones. The stone wall on the right, adorned with lush greenery, stands out vibrantly under the golden light, with the palm trees swaying gently in the evening breeze. Several parked vehicles, including white sedans and vans, are seen on the left side of the road, their surfaces reflecting the amber hues of the sunset. The trees, now highlighted in a golden halo, cast intricate shadows onto the pavement. Further ahead, houses with red-tiled roofs glow warmly in the fading light, standing out against the sky, which transitions from deep orange to soft pastel blue. As the vehicle continues, a white sedan is seen driving in the same lane, while a black sedan and a white van move further ahead. The road markings are crisp, and the entire setting radiates a peaceful, almost cinematic beauty. The golden light, combined with the quiet suburban landscape, creates an atmosphere of tranquility and warmth, making for a mesmerizing and soothing drive.", # noqa: E501
placeholder="Enter your descriptive prompt here...",
)
negative_prompt_input = gr.Textbox(
label="Negative Prompt",
lines=3,
# value="The video captures a series of frames showing ugly scenes, static with no motion, motion blur, over-saturation, shaky footage, low resolution, grainy texture, pixelated images, poorly lit areas, underexposed and overexposed scenes, poor color balance, washed out colors, choppy sequences, jerky movements, low frame rate, artifacting, color banding, unnatural transitions, outdated special effects, fake elements, unconvincing visuals, poorly edited content, jump cuts, visual noise, and flickering. Overall, the video is of poor quality.", # noqa: E501
value="The video captures a game playing, with bad crappy graphics and cartoonish frames. It represents a recording of old outdated games. The lighting looks very fake. The textures are very raw and basic. The geometries are very primitive. The images are very pixelated and of poor CG quality. There are many subtitles in the footage. Overall, the video is unrealistic at all.", # noqa: E501
placeholder="Enter what you DON'T want to see in the image...",
)
with gr.Row():
randomize_seed_checkbox = gr.Checkbox(label="Randomize Seed", value=False)
seed_input = gr.Slider(minimum=0, maximum=1000000, value=1, step=1, label="Seed")
chunking_input = gr.Slider(minimum=0, maximum=121, value=4, step=1, label="Chunking size")
generate_button = gr.Button("Generate Image")
with gr.Column():
output_video = gr.Video(label="Generated Video", format="mp4")
output_file = gr.File(label="Download Results")
generate_button.click(
fn=generate_video,
inputs=[
rgb_video_input,
hdmap_input,
lidar_input,
prompt_input,
negative_prompt_input,
seed_input,
randomize_seed_checkbox,
chunking_input,
],
outputs=[output_video, output_file, seed_input],
)
if __name__ == "__main__":
demo.launch()
|