File size: 5,206 Bytes
226c7c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Registry for training experiments, callbacks and data.
"""

import copy

from hydra.core.config_store import ConfigStore

import cosmos_transfer1.diffusion.config.training.registry as base_training_registry
from cosmos_transfer1.diffusion.config.base.data import register_data_ctrlnet
from cosmos_transfer1.diffusion.config.registry import register_conditioner
from cosmos_transfer1.diffusion.config.training.tokenizer import get_cosmos_diffusion_tokenizer_comp8x8x8
from cosmos_transfer1.diffusion.config.transfer.conditioner import (
    CTRL_HINT_KEYS,
    BaseVideoConditionerWithCtrlConfig,
    VideoConditionerFpsSizePaddingWithCtrlConfig,
    ViewConditionedVideoConditionerFpsSizePaddingWithCtrlConfig,
)
from cosmos_transfer1.diffusion.training.networks.general_dit import GeneralDIT
from cosmos_transfer1.diffusion.training.networks.general_dit_ctrl_enc import GeneralDITEncoder
from cosmos_transfer1.diffusion.training.networks.general_dit_ctrl_enc_multicamera import GeneralDITMulticamEncoder

# from cosmos_transfer1.diffusion.config.registry import register_tokenizer
from cosmos_transfer1.utils.lazy_config import LazyCall as L
from cosmos_transfer1.utils.lazy_config import LazyDict

FADITV2ConfigTrain: LazyDict = L(GeneralDIT)(
    max_img_h=240,
    max_img_w=240,
    max_frames=128,
    in_channels=16,
    out_channels=16,
    patch_spatial=2,
    patch_temporal=1,
    model_channels=4096,
    block_config="FA-CA-MLP",
    num_blocks=28,
    num_heads=32,
    concat_padding_mask=True,
    pos_emb_cls="rope3d",
    pos_emb_learnable=False,
    pos_emb_interpolation="crop",
    block_x_format="THWBD",
    additional_timestamp_channels=None,
    affline_emb_norm=True,
    use_adaln_lora=True,
    adaln_lora_dim=256,
    legacy_patch_emb=False,
)

num_blocks = FADITV2ConfigTrain["num_blocks"]
FADITV2EncoderConfigTrain = copy.deepcopy(FADITV2ConfigTrain)
FADITV2EncoderConfigTrain["_target_"] = GeneralDITEncoder
FADITV2EncoderConfigTrain["layer_mask"] = [True if i > num_blocks // 2 else False for i in range(num_blocks)]

num_blocks = FADITV2ConfigTrain["num_blocks"]
FADITV2MultiCamEncoderConfig = copy.deepcopy(FADITV2ConfigTrain)
FADITV2MultiCamEncoderConfig["_target_"] = GeneralDITMulticamEncoder
FADITV2MultiCamEncoderConfig["layer_mask"] = [True if i > num_blocks // 2 else False for i in range(num_blocks)]


def register_net_train(cs):
    cs.store(
        group="net",
        package="model.net",
        name="faditv2_7b",
        node=FADITV2ConfigTrain,
    )
    cs.store(group="net_ctrl", package="model.net_ctrl", name="faditv2_7b", node=FADITV2EncoderConfigTrain)
    cs.store(group="net_ctrl", package="model.net_ctrl", name="faditv2_sv2mv", node=FADITV2MultiCamEncoderConfig)


def register_conditioner_ctrlnet(cs):
    cs.store(
        group="conditioner",
        package="model.conditioner",
        name="ctrlnet",
        node=BaseVideoConditionerWithCtrlConfig,
    )
    cs.store(
        group="conditioner",
        package="model.conditioner",
        name="ctrlnet_add_fps_image_size_padding_mask",
        node=VideoConditionerFpsSizePaddingWithCtrlConfig,
    )
    cs.store(
        group="conditioner",
        package="model.conditioner",
        name="view_cond_ctrlnet_add_fps_image_size_padding_mask",
        node=ViewConditionedVideoConditionerFpsSizePaddingWithCtrlConfig,
    )


def register_tokenizer(cs):
    cs.store(
        group="tokenizer",
        package="model.tokenizer",
        name="cosmos_diffusion_tokenizer_res720_comp8x8x8_t121_ver092624",
        node=get_cosmos_diffusion_tokenizer_comp8x8x8(resolution="720", chunk_duration=121),
    )


def register_configs():
    cs = ConfigStore.instance()

    # register all the basic configs: net, conditioner, tokenizer.
    register_net_train(cs)
    register_conditioner(cs)
    register_conditioner_ctrlnet(cs)
    register_tokenizer(cs)

    # register training configs: optimizer, scheduler, callbacks, etc.
    base_training_registry.register_configs()

    # register data, experiment, callbacks
    register_data_ctrlnet(cs)

    # register hint keys
    for hint_key in CTRL_HINT_KEYS:
        cs.store(
            group="hint_key",
            package="model",
            name=hint_key,
            node=dict(hint_key=dict(hint_key=hint_key, grayscale=False)),
        )
        cs.store(
            group="hint_key",
            package="model",
            name=f"{hint_key}_grayscale",
            node=dict(hint_key=dict(hint_key=hint_key, grayscale=True)),
        )