File size: 10,375 Bytes
226c7c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional

import omegaconf
import torch
import torchvision.transforms.functional as transforms_F

from cosmos_transfer1.diffusion.datasets.augmentors.control_input import Augmentor
from cosmos_transfer1.diffusion.datasets.dataset_utils import obtain_augmentation_size, obtain_image_size


class ReflectionPadding(Augmentor):
    def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None:
        super().__init__(input_keys, output_keys, args)

    def __call__(self, data_dict: dict) -> dict:
        r"""Performs reflection padding. This function also returns a padding mask.

        Args:
            data_dict (dict): Input data dict
        Returns:
            data_dict (dict): Output dict where images are center cropped.
        """

        assert self.args is not None, "Please specify args in augmentation"
        if self.output_keys is None:
            self.output_keys = self.input_keys

        # Obtain image and augmentation sizes
        orig_w, orig_h = obtain_image_size(data_dict, self.input_keys)
        target_size = obtain_augmentation_size(data_dict, self.args)

        assert isinstance(target_size, (tuple, omegaconf.listconfig.ListConfig)), "Please specify target size as tuple"
        target_w, target_h = target_size

        target_w = int(target_w)
        target_h = int(target_h)

        # Calculate padding vals
        padding_left = int((target_w - orig_w) / 2)
        padding_right = target_w - orig_w - padding_left
        padding_top = int((target_h - orig_h) / 2)
        padding_bottom = target_h - orig_h - padding_top
        padding_vals = [padding_left, padding_top, padding_right, padding_bottom]

        for inp_key, out_key in zip(self.input_keys, self.output_keys):
            if max(padding_vals[0], padding_vals[2]) >= orig_w or max(padding_vals[1], padding_vals[3]) >= orig_h:
                # In this case, we can't perform reflection padding. This is because padding values
                # are larger than the image size. So, perform edge padding instead.
                data_dict[out_key] = transforms_F.pad(data_dict[inp_key], padding_vals, padding_mode="edge")
            else:
                # Perform reflection padding
                data_dict[out_key] = transforms_F.pad(data_dict[inp_key], padding_vals, padding_mode="reflect")

            if out_key != inp_key:
                del data_dict[inp_key]

        # Return padding_mask when padding is performed.
        # Padding mask denotes which pixels are padded.
        padding_mask = torch.ones((1, target_h, target_w))
        padding_mask[:, padding_top : (padding_top + orig_h), padding_left : (padding_left + orig_w)] = 0
        data_dict["padding_mask"] = padding_mask
        data_dict["image_size"] = torch.tensor([target_h, target_w, orig_h, orig_w], dtype=torch.float)

        return data_dict


class ResizeSmallestSide(Augmentor):
    def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None:
        super().__init__(input_keys, output_keys, args)

    def __call__(self, data_dict: dict) -> dict:
        r"""Performs resizing to smaller side

        Args:
            data_dict (dict): Input data dict
        Returns:
            data_dict (dict): Output dict where images are resized
        """

        if self.output_keys is None:
            self.output_keys = self.input_keys
        assert self.args is not None, "Please specify args in augmentations"

        for inp_key, out_key in zip(self.input_keys, self.output_keys):
            out_size = obtain_augmentation_size(data_dict, self.args)
            assert isinstance(out_size, int), "Arg size in resize should be an integer"
            data_dict[out_key] = transforms_F.resize(
                data_dict[inp_key],
                size=out_size,  # type: ignore
                interpolation=getattr(self.args, "interpolation", transforms_F.InterpolationMode.BICUBIC),
                antialias=True,
            )
            if out_key != inp_key:
                del data_dict[inp_key]
        return data_dict


class ResizeLargestSide(Augmentor):
    def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None:
        super().__init__(input_keys, output_keys, args)

    def __call__(self, data_dict: dict) -> dict:
        r"""Performs resizing to larger side

        Args:
            data_dict (dict): Input data dict
        Returns:
            data_dict (dict): Output dict where images are resized
        """

        if self.output_keys is None:
            self.output_keys = self.input_keys
        assert self.args is not None, "Please specify args in augmentations"

        for inp_key, out_key in zip(self.input_keys, self.output_keys):
            out_size = obtain_augmentation_size(data_dict, self.args)
            assert isinstance(out_size, int), "Arg size in resize should be an integer"
            orig_w, orig_h = obtain_image_size(data_dict, self.input_keys)

            scaling_ratio = min(out_size / orig_w, out_size / orig_h)
            target_size = [int(scaling_ratio * orig_h), int(scaling_ratio * orig_w)]

            data_dict[out_key] = transforms_F.resize(
                data_dict[inp_key],
                size=target_size,
                interpolation=getattr(self.args, "interpolation", transforms_F.InterpolationMode.BICUBIC),
                antialias=True,
            )
            if out_key != inp_key:
                del data_dict[inp_key]
        return data_dict


class ResizeSmallestSideAspectPreserving(Augmentor):
    def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None:
        super().__init__(input_keys, output_keys, args)

    def __call__(self, data_dict: dict) -> dict:
        r"""Performs aspect-ratio preserving resizing.
        Image is resized to the dimension which has the smaller ratio of (size / target_size).
        First we compute (w_img / w_target) and (h_img / h_target) and resize the image
        to the dimension that has the smaller of these ratios.

        Args:
            data_dict (dict): Input data dict
        Returns:
            data_dict (dict): Output dict where images are resized
        """

        if self.output_keys is None:
            self.output_keys = self.input_keys
        assert self.args is not None, "Please specify args in augmentations"

        img_size = obtain_augmentation_size(data_dict, self.args)
        assert isinstance(
            img_size, (tuple, omegaconf.listconfig.ListConfig)
        ), f"Arg size in resize should be a tuple, get {type(img_size)}, {img_size}"
        img_w, img_h = img_size

        orig_w, orig_h = obtain_image_size(data_dict, self.input_keys)
        scaling_ratio = max((img_w / orig_w), (img_h / orig_h))
        target_size = (int(scaling_ratio * orig_h + 0.5), int(scaling_ratio * orig_w + 0.5))

        assert (
            target_size[0] >= img_h and target_size[1] >= img_w
        ), f"Resize error. orig {(orig_w, orig_h)} desire {img_size} compute {target_size}"

        for inp_key, out_key in zip(self.input_keys, self.output_keys):
            data_dict[out_key] = transforms_F.resize(
                data_dict[inp_key],
                size=target_size,  # type: ignore
                interpolation=getattr(self.args, "interpolation", transforms_F.InterpolationMode.BICUBIC),
                antialias=True,
            )

            if out_key != inp_key:
                del data_dict[inp_key]
        return data_dict


class ResizeLargestSideAspectPreserving(Augmentor):
    def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None:
        super().__init__(input_keys, output_keys, args)

    def __call__(self, data_dict: dict) -> dict:
        r"""Performs aspect-ratio preserving resizing.
        Image is resized to the dimension which has the larger ratio of (size / target_size).
        First we compute (w_img / w_target) and (h_img / h_target) and resize the image
        to the dimension that has the larger of these ratios.

        Args:
            data_dict (dict): Input data dict
        Returns:
            data_dict (dict): Output dict where images are resized
        """

        if self.output_keys is None:
            self.output_keys = self.input_keys
        assert self.args is not None, "Please specify args in augmentations"

        img_size = obtain_augmentation_size(data_dict, self.args)
        assert isinstance(
            img_size, (tuple, omegaconf.listconfig.ListConfig)
        ), f"Arg size in resize should be a tuple, get {type(img_size)}, {img_size}"
        img_w, img_h = img_size

        orig_w, orig_h = obtain_image_size(data_dict, self.input_keys)
        scaling_ratio = min((img_w / orig_w), (img_h / orig_h))
        target_size = (int(scaling_ratio * orig_h + 0.5), int(scaling_ratio * orig_w + 0.5))

        assert (
            target_size[0] <= img_h and target_size[1] <= img_w
        ), f"Resize error. orig {(orig_w, orig_h)} desire {img_size} compute {target_size}"

        for inp_key, out_key in zip(self.input_keys, self.output_keys):
            data_dict[out_key] = transforms_F.resize(
                data_dict[inp_key],
                size=target_size,  # type: ignore
                interpolation=getattr(self.args, "interpolation", transforms_F.InterpolationMode.BICUBIC),
                antialias=True,
            )

            if out_key != inp_key:
                del data_dict[inp_key]
        return data_dict