File size: 24,606 Bytes
226c7c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Run this command to interactively debug:
PYTHONPATH=. python cosmos_transfer1/diffusion/datasets/example_transfer_dataset.py
"""

import os
import pickle
import traceback
import warnings

import numpy as np
import torch
from decord import VideoReader, cpu
from torch.utils.data import Dataset

from cosmos_transfer1.diffusion.datasets.augmentor_provider import AUGMENTOR_OPTIONS
from cosmos_transfer1.diffusion.datasets.augmentors.control_input import VIDEO_RES_SIZE_INFO
from cosmos_transfer1.diffusion.inference.inference_utils import detect_aspect_ratio
from cosmos_transfer1.utils.lazy_config import instantiate

# mappings between control types and corresponding sub-folders names in the data folder
CTRL_TYPE_INFO = {
    "keypoint": {"folder": "keypoint", "format": "pickle", "data_dict_key": "keypoint"},
    "depth": {"folder": "depth", "format": "mp4", "data_dict_key": "depth"},
    "lidar": {"folder": "lidar", "format": "mp4", "data_dict_key": "lidar"},
    "hdmap": {"folder": "hdmap", "format": "mp4", "data_dict_key": "hdmap"},
    "seg": {"folder": "seg", "format": "pickle", "data_dict_key": "segmentation"},
    "edge": {"folder": None},  # Canny edge, computed on-the-fly
    "vis": {"folder": None},  # Blur, computed on-the-fly
    "upscale": {"folder": None},  # Computed on-the-fly
}


class ExampleTransferDataset(Dataset):
    def __init__(self, dataset_dir, num_frames, resolution, hint_key="control_input_vis", is_train=True):
        """Dataset class for loading video-text-to-video generation data with control inputs.

        Args:
            dataset_dir (str): Base path to the dataset directory
            num_frames (int): Number of consecutive frames to load per sequence
            resolution (str): resolution of the target video size
            hint_key (str): The hint key for loading the correct control input data modality
            is_train (bool): Whether this is for training

        NOTE: in our example dataset we do not have a validation dataset. The is_train flag is kept here for customized configuration.
        """
        super().__init__()
        self.dataset_dir = dataset_dir
        self.sequence_length = num_frames
        self.is_train = is_train
        self.resolution = resolution
        assert (
            resolution in VIDEO_RES_SIZE_INFO.keys()
        ), "The provided resolution cannot be found in VIDEO_RES_SIZE_INFO."

        # Control input setup with file formats
        self.ctrl_type = hint_key.replace("control_input_", "")
        self.ctrl_data_pth_config = CTRL_TYPE_INFO[self.ctrl_type]

        # Set up directories - only collect paths
        video_dir = os.path.join(self.dataset_dir, "videos")
        self.video_paths = [os.path.join(video_dir, f) for f in os.listdir(video_dir) if f.endswith(".mp4")]
        self.t5_dir = os.path.join(self.dataset_dir, "t5_xxl")
        print(f"Finish initializing dataset with {len(self.video_paths)} videos in total.")

        # Set up preprocessing and augmentation
        augmentor_name = f"video_ctrlnet_augmentor_{hint_key}"
        augmentor_cfg = AUGMENTOR_OPTIONS[augmentor_name](resolution=resolution)
        self.augmentor = {k: instantiate(v) for k, v in augmentor_cfg.items()}

    def _sample_frames(self, video_path):
        """Sample frames from video and get metadata"""
        vr = VideoReader(video_path, ctx=cpu(0), num_threads=2)
        n_frames = len(vr)

        # Calculate valid start frame range
        max_start_idx = n_frames - self.sequence_length
        if max_start_idx < 0:  # Video is too short
            return None, None, None

        # Sample start frame
        start_frame = np.random.randint(0, max_start_idx + 1)
        frame_ids = list(range(start_frame, start_frame + self.sequence_length))

        # Load frames
        frames = vr.get_batch(frame_ids).asnumpy()
        frames = frames.astype(np.uint8)
        try:
            fps = vr.get_avg_fps()
        except Exception:  # failed to read FPS
            fps = 24

        return frames, frame_ids, fps

    def _load_control_data(self, sample):
        """Load control data for the video clip."""
        data_dict = {}
        frame_ids = sample["frame_ids"]
        ctrl_path = sample["ctrl_path"]
        try:
            if self.ctrl_type == "seg":
                with open(ctrl_path, "rb") as f:
                    ctrl_data = pickle.load(f)
                # key should match line 982 at cosmos_transfer1/diffusion/datasets/augmentors/control_input.py
                data_dict["segmentation"] = ctrl_data
            elif self.ctrl_type == "keypoint":
                with open(ctrl_path, "rb") as f:
                    ctrl_data = pickle.load(f)
                data_dict["keypoint"] = ctrl_data
            elif self.ctrl_type == "depth":
                vr = VideoReader(ctrl_path, ctx=cpu(0))
                # Ensure the depth video has the same number of frames
                assert len(vr) >= frame_ids[-1] + 1, f"Depth video {ctrl_path} has fewer frames than main video"

                # Load the corresponding frames
                depth_frames = vr.get_batch(frame_ids).asnumpy()  # [T,H,W,C]
                depth_frames = torch.from_numpy(depth_frames).permute(3, 0, 1, 2)  # [C,T,H,W], same as rgb video
                data_dict["depth"] = {
                    "video": depth_frames,
                    "frame_start": frame_ids[0],
                    "frame_end": frame_ids[-1],
                }
            elif self.ctrl_type == "lidar":
                vr = VideoReader(ctrl_path, ctx=cpu(0))
                # Ensure the lidar depth video has the same number of frames
                assert len(vr) >= frame_ids[-1] + 1, f"Lidar video {ctrl_path} has fewer frames than main video"
                # Load the corresponding frames
                lidar_frames = vr.get_batch(frame_ids).asnumpy()  # [T,H,W,C]
                lidar_frames = torch.from_numpy(lidar_frames).permute(3, 0, 1, 2)  # [C,T,H,W], same as rgb video
                data_dict["lidar"] = {
                    "video": lidar_frames,
                    "frame_start": frame_ids[0],
                    "frame_end": frame_ids[-1],
                }
            elif self.ctrl_type == "hdmap":
                vr = VideoReader(ctrl_path, ctx=cpu(0))
                # Ensure the hdmap video has the same number of frames
                assert len(vr) >= frame_ids[-1] + 1, f"Hdmap video {ctrl_path} has fewer frames than main video"
                # Load the corresponding frames
                hdmap_frames = vr.get_batch(frame_ids).asnumpy()  # [T,H,W,C]
                hdmap_frames = torch.from_numpy(hdmap_frames).permute(3, 0, 1, 2)  # [C,T,H,W], same as rgb video
                data_dict["hdmap"] = {
                    "video": hdmap_frames,
                    "frame_start": frame_ids[0],
                    "frame_end": frame_ids[-1],
                }

        except Exception as e:
            warnings.warn(f"Failed to load control data from {ctrl_path}: {str(e)}")
            return None

        return data_dict

    def __getitem__(self, index):
        max_retries = 3
        for _ in range(max_retries):
            try:
                video_path = self.video_paths[index]
                video_name = os.path.basename(video_path).replace(".mp4", "")

                # Sample frames
                frames, frame_ids, fps = self._sample_frames(video_path)
                if frames is None:  # Invalid video or too short
                    index = np.random.randint(len(self.video_paths))
                    continue

                data = dict()

                # Process video frames
                video = torch.from_numpy(frames).permute(3, 0, 1, 2)  # [T,H,W,C] -> [C,T,H,W]
                aspect_ratio = detect_aspect_ratio((video.shape[3], video.shape[2]))  # expects (W, H)

                # Basic data
                data["video"] = video
                data["aspect_ratio"] = aspect_ratio

                # Load T5 embeddings
                if self.ctrl_type in ["hdmap", "lidar"]:
                    # AV data load captions differently
                    data["video_name"] = {
                        "video_path": video_path,
                        "t5_embedding_path": os.path.join(self.t5_dir, f"{video_name}.pkl"),
                        "start_frame_id": str(frame_ids[0]),
                    }
                    with open(data["video_name"]["t5_embedding_path"], "rb") as f:
                        t5_embedding = pickle.load(f)["pickle"]["ground_truth"]["embeddings"]["t5_xxl"]
                    # Ensure t5_embedding is a numpy array
                    if isinstance(t5_embedding, list):
                        t5_embedding = np.array(t5_embedding[0] if len(t5_embedding) > 0 else t5_embedding)
                    data["t5_text_embeddings"] = torch.from_numpy(t5_embedding)  # .cuda()
                    data["t5_text_mask"] = torch.ones(512, dtype=torch.int64)  # .cuda()
                else:
                    data["video_name"] = {
                        "video_path": video_path,
                        "t5_embedding_path": os.path.join(self.t5_dir, f"{video_name}.pickle"),
                        "start_frame_id": str(frame_ids[0]),
                    }
                    with open(data["video_name"]["t5_embedding_path"], "rb") as f:
                        t5_embedding = pickle.load(f)
                    # Ensure t5_embedding is a numpy array
                    if isinstance(t5_embedding, list):
                        t5_embedding = np.array(t5_embedding[0] if len(t5_embedding) > 0 else t5_embedding)
                    data["t5_text_embeddings"] = torch.from_numpy(t5_embedding)  # .cuda()
                    data["t5_text_mask"] = torch.ones(512, dtype=torch.int64)  # .cuda()

                # Add metadata
                data["fps"] = fps
                data["frame_start"] = frame_ids[0]
                data["frame_end"] = frame_ids[-1] + 1
                data["num_frames"] = self.sequence_length
                data["image_size"] = torch.tensor([704, 1280, 704, 1280])  # .cuda()
                data["padding_mask"] = torch.zeros(1, 704, 1280)  # .cuda()

                if self.ctrl_type:
                    ctrl_data = self._load_control_data(
                        {
                            "ctrl_path": os.path.join(
                                self.dataset_dir,
                                self.ctrl_data_pth_config["folder"],
                                f"{video_name}.{self.ctrl_data_pth_config['format']}",
                            )
                            if self.ctrl_data_pth_config["folder"] is not None
                            else None,
                            "frame_ids": frame_ids,
                        }
                    )
                    if ctrl_data is None:  # Control data loading failed
                        index = np.random.randint(len(self.video_paths))
                        continue
                    data.update(ctrl_data)

                    # The ctrl_data above is the 'raw' data loaded (e.g. a loaded segmentation pkl).
                    # Next, we process it into the control input "video" tensor that the model expects.
                    # This is done in the augmentor.
                    for _, aug_fn in self.augmentor.items():
                        data = aug_fn(data)

                return data

            except Exception:
                warnings.warn(
                    f"Invalid data encountered: {self.video_paths[index]}. Skipped "
                    f"(by randomly sampling another sample in the same dataset)."
                )
                warnings.warn("FULL TRACEBACK:")
                warnings.warn(traceback.format_exc())
                if _ == max_retries - 1:
                    raise RuntimeError(f"Failed to load data after {max_retries} attempts")
                index = np.random.randint(len(self.video_paths))
        return

    def __len__(self):
        return len(self.video_paths)

    def __str__(self):
        return f"{len(self.video_paths)} samples from {self.dataset_dir}"


class AVTransferDataset(ExampleTransferDataset):
    def __init__(
        self,
        dataset_dir,
        num_frames,
        resolution,
        view_keys,
        hint_key="control_input_hdmap",
        sample_n_views=-1,
        caption_view_idx_map=None,
        is_train=True,
        load_mv_emb=False,
    ):
        """Dataset class for loading video-text-to-video generation data with control inputs.

        Args:
            dataset_dir (str): Base path to the dataset directory
            num_frames (int): Number of consecutive frames to load per sequence
            resolution (str): resolution of the target video size
            hint_key (str): The hint key for loading the correct control input data modality
            view_keys (list[str]): list of view names that the dataloader should load
            sample_n_views (int): Number of views to sample
            caption_view_idx_map (dict): Optional dictionary mapping index in view_keys to index in model.view_embeddings
            is_train (bool): Whether this is for training
            load_mv_emb (bool): Whether to load t5 embeddings for all views, or only  for front view
        NOTE: in our example dataset we do not have a validation dataset. The is_train flag is kept here for customized configuration.
        """
        super(ExampleTransferDataset, self).__init__()
        self.dataset_dir = dataset_dir
        self.sequence_length = num_frames
        self.is_train = is_train
        self.resolution = resolution
        self.view_keys = view_keys
        self.load_mv_emb = load_mv_emb
        assert (
            resolution in VIDEO_RES_SIZE_INFO.keys()
        ), "The provided resolution cannot be found in VIDEO_RES_SIZE_INFO."

        # Control input setup with file formats
        self.ctrl_type = hint_key.replace("control_input_", "")
        self.ctrl_data_pth_config = CTRL_TYPE_INFO[self.ctrl_type]

        # Set up directories - only collect paths
        video_dir = os.path.join(self.dataset_dir, "videos", "pinhole_front")
        self.video_paths = [os.path.join(video_dir, f) for f in os.listdir(video_dir) if f.endswith(".mp4")]
        self.t5_dir = os.path.join(self.dataset_dir, "t5_xxl")

        cache_dir = os.path.join(self.dataset_dir, "cache")
        self.prefix_t5_embeddings = {}
        for view_key in view_keys:
            with open(os.path.join(cache_dir, f"prefix_{view_key}.pkl"), "rb") as f:
                self.prefix_t5_embeddings[view_key] = pickle.load(f)
        if caption_view_idx_map is None:
            self.caption_view_idx_map = dict([(i, i) for i in range(len(self.view_keys))])
        else:
            self.caption_view_idx_map = caption_view_idx_map
        self.sample_n_views = sample_n_views

        print(f"Finish initializing dataset with {len(self.video_paths)} videos in total.")

        # Set up preprocessing and augmentation
        augmentor_name = f"video_ctrlnet_augmentor_{hint_key}"
        augmentor_cfg = AUGMENTOR_OPTIONS[augmentor_name](resolution=resolution)
        self.augmentor = {k: instantiate(v) for k, v in augmentor_cfg.items()}

    def _load_video(self, video_path, frame_ids):
        vr = VideoReader(video_path, ctx=cpu(0), num_threads=2)
        assert (np.array(frame_ids) < len(vr)).all()
        assert (np.array(frame_ids) >= 0).all()
        vr.seek(0)
        frame_data = vr.get_batch(frame_ids).asnumpy()
        try:
            fps = vr.get_avg_fps()
        except Exception:  # failed to read FPS
            fps = 24
        return frame_data, fps

    def __getitem__(self, index):
        max_retries = 3
        for _ in range(max_retries):
            try:
                video_path = self.video_paths[index]
                video_name = os.path.basename(video_path).replace(".mp4", "")

                data = dict()
                ctrl_videos = []
                videos = []
                t5_embeddings = []
                t5_masks = []
                view_indices = [i for i in range(len(self.view_keys))]
                view_indices_conditioning = []
                if self.sample_n_views > 1:
                    sampled_idx = np.random.choice(
                        np.arange(1, len(view_indices)),
                        size=min(self.sample_n_views - 1, len(view_indices) - 1),
                        replace=False,
                    )
                    sampled_idx = np.concatenate(
                        [
                            [
                                0,
                            ],
                            sampled_idx,
                        ]
                    )
                    sampled_idx.sort()
                    view_indices = sampled_idx.tolist()

                frame_ids = None
                fps = None
                for view_index in view_indices:
                    view_key = self.view_keys[view_index]
                    if frame_ids is None:
                        frames, frame_ids, fps = self._sample_frames(video_path)
                        if frames is None:  # Invalid video or too short
                            raise Exception(f"Failed to load frames {video_path}")

                    else:
                        frames, fps = self._load_video(
                            os.path.join(self.dataset_dir, "videos", view_key, os.path.basename(video_path)), frame_ids
                        )
                    # Process video frames
                    video = torch.from_numpy(frames)

                    video = video.permute(3, 0, 1, 2)  # Rearrange from [T, C, H, W] to [C, T, H, W]
                    aspect_ratio = detect_aspect_ratio((video.shape[3], video.shape[2]))  # expects (W, H)
                    videos.append(video)

                    if video_name[-2] == "_" and video_name[-1].isdigit():
                        video_name_emb = video_name[:-2]
                    else:
                        video_name_emb = video_name

                    if self.load_mv_emb or view_key == "pinhole_front":
                        t5_embedding_path = os.path.join(self.dataset_dir, "t5_xxl", view_key, f"{video_name_emb}.pkl")
                        with open(t5_embedding_path, "rb") as f:
                            t5_embedding = pickle.load(f)[0]
                        if self.load_mv_emb:
                            t5_embedding = np.concatenate([self.prefix_t5_embeddings[view_key], t5_embedding], axis=0)
                    else:
                        # use camera prompt
                        t5_embedding = self.prefix_t5_embeddings[view_key]

                    t5_embedding = torch.from_numpy(t5_embedding)
                    t5_mask = torch.ones(t5_embedding.shape[0], dtype=torch.int64)
                    if t5_embedding.shape[0] < 512:
                        t5_embedding = torch.cat([t5_embedding, torch.zeros(512 - t5_embedding.shape[0], 1024)], dim=0)
                        t5_mask = torch.cat([t5_mask, torch.zeros(512 - t5_mask.shape[0])], dim=0)
                    else:
                        t5_embedding = t5_embedding[:512]
                        t5_mask = t5_mask[:512]
                    t5_embeddings.append(t5_embedding)
                    t5_masks.append(t5_mask)
                    caption_viewid = self.caption_view_idx_map[view_index]
                    view_indices_conditioning.append(torch.ones(video.shape[1]) * caption_viewid)

                    if self.ctrl_type:
                        v_ctrl_data = self._load_control_data(
                            {
                                "ctrl_path": os.path.join(
                                    self.dataset_dir,
                                    self.ctrl_data_pth_config["folder"],
                                    view_key,
                                    f"{video_name}.{self.ctrl_data_pth_config['format']}",
                                )
                                if self.ctrl_data_pth_config["folder"] is not None
                                else None,
                                "frame_ids": frame_ids,
                            }
                        )
                        if v_ctrl_data is None:  # Control data loading failed
                            raise Exception("Failed to load v_ctrl_data")
                        ctrl_videos.append(v_ctrl_data[self.ctrl_type]["video"])

                video = torch.cat(videos, dim=1)
                ctrl_videos = torch.cat(ctrl_videos, dim=1)
                t5_embedding = torch.cat(t5_embeddings, dim=0)
                view_indices_conditioning = torch.cat(view_indices_conditioning, dim=0)

                # Basic data
                data["video"] = video
                data["video_name"] = video_name
                data["aspect_ratio"] = aspect_ratio
                data["t5_text_embeddings"] = t5_embedding
                data["t5_text_mask"] = torch.cat(t5_masks)
                data["view_indices"] = view_indices_conditioning.contiguous()
                data["frame_repeat"] = torch.zeros(len(view_indices))
                # Add metadata
                data["fps"] = fps
                data["frame_start"] = frame_ids[0]
                data["frame_end"] = frame_ids[-1] + 1
                data["num_frames"] = self.sequence_length
                data["image_size"] = torch.tensor([704, 1280, 704, 1280])
                data["padding_mask"] = torch.zeros(1, 704, 1280)
                data[self.ctrl_type] = dict()
                data[self.ctrl_type]["video"] = ctrl_videos

                # The ctrl_data above is the 'raw' data loaded (e.g. a loaded lidar pkl).
                # Next, we process it into the control input "video" tensor that the model expects.
                # This is done in the augmentor.
                for _, aug_fn in self.augmentor.items():
                    data = aug_fn(data)

                return data

            except Exception:
                warnings.warn(
                    f"Invalid data encountered: {self.video_paths[index]}. Skipped "
                    f"(by randomly sampling another sample in the same dataset)."
                )
                warnings.warn("FULL TRACEBACK:")
                warnings.warn(traceback.format_exc())
                if _ == max_retries - 1:
                    raise RuntimeError(f"Failed to load data after {max_retries} attempts")
                index = np.random.randint(len(self.video_paths))
        return


if __name__ == "__main__":
    """
    Sanity check for the dataset.
    """
    control_input_key = "control_input_lidar"
    visualize_control_input = True

    dataset = AVTransferDataset(
        dataset_dir="datasets/waymo_transfer1",
        view_keys=["pinhole_front"],
        hint_key=control_input_key,
        num_frames=121,
        resolution="720",
        is_train=True,
    )
    print("finished init dataset")
    indices = [0, 12, 100, -1]
    for idx in indices:
        data = dataset[idx]
        print(
            (
                f"{idx=} "
                f"{data['frame_start']=}\n"
                f"{data['frame_end']=}\n"
                f"{data['video'].sum()=}\n"
                f"{data['video'].shape=}\n"
                f"{data[control_input_key].shape=}\n"  # should match the video shape
                f"{data['video_name']=}\n"
                f"{data['t5_text_embeddings'].shape=}\n"
                "---"
            )
        )
        if visualize_control_input:
            import imageio

            control_input_tensor = data[control_input_key].permute(1, 2, 3, 0).cpu().numpy()
            video_name = f"{control_input_key}.mp4"
            imageio.mimsave(video_name, control_input_tensor, fps=24)