File size: 24,606 Bytes
226c7c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Run this command to interactively debug:
PYTHONPATH=. python cosmos_transfer1/diffusion/datasets/example_transfer_dataset.py
"""
import os
import pickle
import traceback
import warnings
import numpy as np
import torch
from decord import VideoReader, cpu
from torch.utils.data import Dataset
from cosmos_transfer1.diffusion.datasets.augmentor_provider import AUGMENTOR_OPTIONS
from cosmos_transfer1.diffusion.datasets.augmentors.control_input import VIDEO_RES_SIZE_INFO
from cosmos_transfer1.diffusion.inference.inference_utils import detect_aspect_ratio
from cosmos_transfer1.utils.lazy_config import instantiate
# mappings between control types and corresponding sub-folders names in the data folder
CTRL_TYPE_INFO = {
"keypoint": {"folder": "keypoint", "format": "pickle", "data_dict_key": "keypoint"},
"depth": {"folder": "depth", "format": "mp4", "data_dict_key": "depth"},
"lidar": {"folder": "lidar", "format": "mp4", "data_dict_key": "lidar"},
"hdmap": {"folder": "hdmap", "format": "mp4", "data_dict_key": "hdmap"},
"seg": {"folder": "seg", "format": "pickle", "data_dict_key": "segmentation"},
"edge": {"folder": None}, # Canny edge, computed on-the-fly
"vis": {"folder": None}, # Blur, computed on-the-fly
"upscale": {"folder": None}, # Computed on-the-fly
}
class ExampleTransferDataset(Dataset):
def __init__(self, dataset_dir, num_frames, resolution, hint_key="control_input_vis", is_train=True):
"""Dataset class for loading video-text-to-video generation data with control inputs.
Args:
dataset_dir (str): Base path to the dataset directory
num_frames (int): Number of consecutive frames to load per sequence
resolution (str): resolution of the target video size
hint_key (str): The hint key for loading the correct control input data modality
is_train (bool): Whether this is for training
NOTE: in our example dataset we do not have a validation dataset. The is_train flag is kept here for customized configuration.
"""
super().__init__()
self.dataset_dir = dataset_dir
self.sequence_length = num_frames
self.is_train = is_train
self.resolution = resolution
assert (
resolution in VIDEO_RES_SIZE_INFO.keys()
), "The provided resolution cannot be found in VIDEO_RES_SIZE_INFO."
# Control input setup with file formats
self.ctrl_type = hint_key.replace("control_input_", "")
self.ctrl_data_pth_config = CTRL_TYPE_INFO[self.ctrl_type]
# Set up directories - only collect paths
video_dir = os.path.join(self.dataset_dir, "videos")
self.video_paths = [os.path.join(video_dir, f) for f in os.listdir(video_dir) if f.endswith(".mp4")]
self.t5_dir = os.path.join(self.dataset_dir, "t5_xxl")
print(f"Finish initializing dataset with {len(self.video_paths)} videos in total.")
# Set up preprocessing and augmentation
augmentor_name = f"video_ctrlnet_augmentor_{hint_key}"
augmentor_cfg = AUGMENTOR_OPTIONS[augmentor_name](resolution=resolution)
self.augmentor = {k: instantiate(v) for k, v in augmentor_cfg.items()}
def _sample_frames(self, video_path):
"""Sample frames from video and get metadata"""
vr = VideoReader(video_path, ctx=cpu(0), num_threads=2)
n_frames = len(vr)
# Calculate valid start frame range
max_start_idx = n_frames - self.sequence_length
if max_start_idx < 0: # Video is too short
return None, None, None
# Sample start frame
start_frame = np.random.randint(0, max_start_idx + 1)
frame_ids = list(range(start_frame, start_frame + self.sequence_length))
# Load frames
frames = vr.get_batch(frame_ids).asnumpy()
frames = frames.astype(np.uint8)
try:
fps = vr.get_avg_fps()
except Exception: # failed to read FPS
fps = 24
return frames, frame_ids, fps
def _load_control_data(self, sample):
"""Load control data for the video clip."""
data_dict = {}
frame_ids = sample["frame_ids"]
ctrl_path = sample["ctrl_path"]
try:
if self.ctrl_type == "seg":
with open(ctrl_path, "rb") as f:
ctrl_data = pickle.load(f)
# key should match line 982 at cosmos_transfer1/diffusion/datasets/augmentors/control_input.py
data_dict["segmentation"] = ctrl_data
elif self.ctrl_type == "keypoint":
with open(ctrl_path, "rb") as f:
ctrl_data = pickle.load(f)
data_dict["keypoint"] = ctrl_data
elif self.ctrl_type == "depth":
vr = VideoReader(ctrl_path, ctx=cpu(0))
# Ensure the depth video has the same number of frames
assert len(vr) >= frame_ids[-1] + 1, f"Depth video {ctrl_path} has fewer frames than main video"
# Load the corresponding frames
depth_frames = vr.get_batch(frame_ids).asnumpy() # [T,H,W,C]
depth_frames = torch.from_numpy(depth_frames).permute(3, 0, 1, 2) # [C,T,H,W], same as rgb video
data_dict["depth"] = {
"video": depth_frames,
"frame_start": frame_ids[0],
"frame_end": frame_ids[-1],
}
elif self.ctrl_type == "lidar":
vr = VideoReader(ctrl_path, ctx=cpu(0))
# Ensure the lidar depth video has the same number of frames
assert len(vr) >= frame_ids[-1] + 1, f"Lidar video {ctrl_path} has fewer frames than main video"
# Load the corresponding frames
lidar_frames = vr.get_batch(frame_ids).asnumpy() # [T,H,W,C]
lidar_frames = torch.from_numpy(lidar_frames).permute(3, 0, 1, 2) # [C,T,H,W], same as rgb video
data_dict["lidar"] = {
"video": lidar_frames,
"frame_start": frame_ids[0],
"frame_end": frame_ids[-1],
}
elif self.ctrl_type == "hdmap":
vr = VideoReader(ctrl_path, ctx=cpu(0))
# Ensure the hdmap video has the same number of frames
assert len(vr) >= frame_ids[-1] + 1, f"Hdmap video {ctrl_path} has fewer frames than main video"
# Load the corresponding frames
hdmap_frames = vr.get_batch(frame_ids).asnumpy() # [T,H,W,C]
hdmap_frames = torch.from_numpy(hdmap_frames).permute(3, 0, 1, 2) # [C,T,H,W], same as rgb video
data_dict["hdmap"] = {
"video": hdmap_frames,
"frame_start": frame_ids[0],
"frame_end": frame_ids[-1],
}
except Exception as e:
warnings.warn(f"Failed to load control data from {ctrl_path}: {str(e)}")
return None
return data_dict
def __getitem__(self, index):
max_retries = 3
for _ in range(max_retries):
try:
video_path = self.video_paths[index]
video_name = os.path.basename(video_path).replace(".mp4", "")
# Sample frames
frames, frame_ids, fps = self._sample_frames(video_path)
if frames is None: # Invalid video or too short
index = np.random.randint(len(self.video_paths))
continue
data = dict()
# Process video frames
video = torch.from_numpy(frames).permute(3, 0, 1, 2) # [T,H,W,C] -> [C,T,H,W]
aspect_ratio = detect_aspect_ratio((video.shape[3], video.shape[2])) # expects (W, H)
# Basic data
data["video"] = video
data["aspect_ratio"] = aspect_ratio
# Load T5 embeddings
if self.ctrl_type in ["hdmap", "lidar"]:
# AV data load captions differently
data["video_name"] = {
"video_path": video_path,
"t5_embedding_path": os.path.join(self.t5_dir, f"{video_name}.pkl"),
"start_frame_id": str(frame_ids[0]),
}
with open(data["video_name"]["t5_embedding_path"], "rb") as f:
t5_embedding = pickle.load(f)["pickle"]["ground_truth"]["embeddings"]["t5_xxl"]
# Ensure t5_embedding is a numpy array
if isinstance(t5_embedding, list):
t5_embedding = np.array(t5_embedding[0] if len(t5_embedding) > 0 else t5_embedding)
data["t5_text_embeddings"] = torch.from_numpy(t5_embedding) # .cuda()
data["t5_text_mask"] = torch.ones(512, dtype=torch.int64) # .cuda()
else:
data["video_name"] = {
"video_path": video_path,
"t5_embedding_path": os.path.join(self.t5_dir, f"{video_name}.pickle"),
"start_frame_id": str(frame_ids[0]),
}
with open(data["video_name"]["t5_embedding_path"], "rb") as f:
t5_embedding = pickle.load(f)
# Ensure t5_embedding is a numpy array
if isinstance(t5_embedding, list):
t5_embedding = np.array(t5_embedding[0] if len(t5_embedding) > 0 else t5_embedding)
data["t5_text_embeddings"] = torch.from_numpy(t5_embedding) # .cuda()
data["t5_text_mask"] = torch.ones(512, dtype=torch.int64) # .cuda()
# Add metadata
data["fps"] = fps
data["frame_start"] = frame_ids[0]
data["frame_end"] = frame_ids[-1] + 1
data["num_frames"] = self.sequence_length
data["image_size"] = torch.tensor([704, 1280, 704, 1280]) # .cuda()
data["padding_mask"] = torch.zeros(1, 704, 1280) # .cuda()
if self.ctrl_type:
ctrl_data = self._load_control_data(
{
"ctrl_path": os.path.join(
self.dataset_dir,
self.ctrl_data_pth_config["folder"],
f"{video_name}.{self.ctrl_data_pth_config['format']}",
)
if self.ctrl_data_pth_config["folder"] is not None
else None,
"frame_ids": frame_ids,
}
)
if ctrl_data is None: # Control data loading failed
index = np.random.randint(len(self.video_paths))
continue
data.update(ctrl_data)
# The ctrl_data above is the 'raw' data loaded (e.g. a loaded segmentation pkl).
# Next, we process it into the control input "video" tensor that the model expects.
# This is done in the augmentor.
for _, aug_fn in self.augmentor.items():
data = aug_fn(data)
return data
except Exception:
warnings.warn(
f"Invalid data encountered: {self.video_paths[index]}. Skipped "
f"(by randomly sampling another sample in the same dataset)."
)
warnings.warn("FULL TRACEBACK:")
warnings.warn(traceback.format_exc())
if _ == max_retries - 1:
raise RuntimeError(f"Failed to load data after {max_retries} attempts")
index = np.random.randint(len(self.video_paths))
return
def __len__(self):
return len(self.video_paths)
def __str__(self):
return f"{len(self.video_paths)} samples from {self.dataset_dir}"
class AVTransferDataset(ExampleTransferDataset):
def __init__(
self,
dataset_dir,
num_frames,
resolution,
view_keys,
hint_key="control_input_hdmap",
sample_n_views=-1,
caption_view_idx_map=None,
is_train=True,
load_mv_emb=False,
):
"""Dataset class for loading video-text-to-video generation data with control inputs.
Args:
dataset_dir (str): Base path to the dataset directory
num_frames (int): Number of consecutive frames to load per sequence
resolution (str): resolution of the target video size
hint_key (str): The hint key for loading the correct control input data modality
view_keys (list[str]): list of view names that the dataloader should load
sample_n_views (int): Number of views to sample
caption_view_idx_map (dict): Optional dictionary mapping index in view_keys to index in model.view_embeddings
is_train (bool): Whether this is for training
load_mv_emb (bool): Whether to load t5 embeddings for all views, or only for front view
NOTE: in our example dataset we do not have a validation dataset. The is_train flag is kept here for customized configuration.
"""
super(ExampleTransferDataset, self).__init__()
self.dataset_dir = dataset_dir
self.sequence_length = num_frames
self.is_train = is_train
self.resolution = resolution
self.view_keys = view_keys
self.load_mv_emb = load_mv_emb
assert (
resolution in VIDEO_RES_SIZE_INFO.keys()
), "The provided resolution cannot be found in VIDEO_RES_SIZE_INFO."
# Control input setup with file formats
self.ctrl_type = hint_key.replace("control_input_", "")
self.ctrl_data_pth_config = CTRL_TYPE_INFO[self.ctrl_type]
# Set up directories - only collect paths
video_dir = os.path.join(self.dataset_dir, "videos", "pinhole_front")
self.video_paths = [os.path.join(video_dir, f) for f in os.listdir(video_dir) if f.endswith(".mp4")]
self.t5_dir = os.path.join(self.dataset_dir, "t5_xxl")
cache_dir = os.path.join(self.dataset_dir, "cache")
self.prefix_t5_embeddings = {}
for view_key in view_keys:
with open(os.path.join(cache_dir, f"prefix_{view_key}.pkl"), "rb") as f:
self.prefix_t5_embeddings[view_key] = pickle.load(f)
if caption_view_idx_map is None:
self.caption_view_idx_map = dict([(i, i) for i in range(len(self.view_keys))])
else:
self.caption_view_idx_map = caption_view_idx_map
self.sample_n_views = sample_n_views
print(f"Finish initializing dataset with {len(self.video_paths)} videos in total.")
# Set up preprocessing and augmentation
augmentor_name = f"video_ctrlnet_augmentor_{hint_key}"
augmentor_cfg = AUGMENTOR_OPTIONS[augmentor_name](resolution=resolution)
self.augmentor = {k: instantiate(v) for k, v in augmentor_cfg.items()}
def _load_video(self, video_path, frame_ids):
vr = VideoReader(video_path, ctx=cpu(0), num_threads=2)
assert (np.array(frame_ids) < len(vr)).all()
assert (np.array(frame_ids) >= 0).all()
vr.seek(0)
frame_data = vr.get_batch(frame_ids).asnumpy()
try:
fps = vr.get_avg_fps()
except Exception: # failed to read FPS
fps = 24
return frame_data, fps
def __getitem__(self, index):
max_retries = 3
for _ in range(max_retries):
try:
video_path = self.video_paths[index]
video_name = os.path.basename(video_path).replace(".mp4", "")
data = dict()
ctrl_videos = []
videos = []
t5_embeddings = []
t5_masks = []
view_indices = [i for i in range(len(self.view_keys))]
view_indices_conditioning = []
if self.sample_n_views > 1:
sampled_idx = np.random.choice(
np.arange(1, len(view_indices)),
size=min(self.sample_n_views - 1, len(view_indices) - 1),
replace=False,
)
sampled_idx = np.concatenate(
[
[
0,
],
sampled_idx,
]
)
sampled_idx.sort()
view_indices = sampled_idx.tolist()
frame_ids = None
fps = None
for view_index in view_indices:
view_key = self.view_keys[view_index]
if frame_ids is None:
frames, frame_ids, fps = self._sample_frames(video_path)
if frames is None: # Invalid video or too short
raise Exception(f"Failed to load frames {video_path}")
else:
frames, fps = self._load_video(
os.path.join(self.dataset_dir, "videos", view_key, os.path.basename(video_path)), frame_ids
)
# Process video frames
video = torch.from_numpy(frames)
video = video.permute(3, 0, 1, 2) # Rearrange from [T, C, H, W] to [C, T, H, W]
aspect_ratio = detect_aspect_ratio((video.shape[3], video.shape[2])) # expects (W, H)
videos.append(video)
if video_name[-2] == "_" and video_name[-1].isdigit():
video_name_emb = video_name[:-2]
else:
video_name_emb = video_name
if self.load_mv_emb or view_key == "pinhole_front":
t5_embedding_path = os.path.join(self.dataset_dir, "t5_xxl", view_key, f"{video_name_emb}.pkl")
with open(t5_embedding_path, "rb") as f:
t5_embedding = pickle.load(f)[0]
if self.load_mv_emb:
t5_embedding = np.concatenate([self.prefix_t5_embeddings[view_key], t5_embedding], axis=0)
else:
# use camera prompt
t5_embedding = self.prefix_t5_embeddings[view_key]
t5_embedding = torch.from_numpy(t5_embedding)
t5_mask = torch.ones(t5_embedding.shape[0], dtype=torch.int64)
if t5_embedding.shape[0] < 512:
t5_embedding = torch.cat([t5_embedding, torch.zeros(512 - t5_embedding.shape[0], 1024)], dim=0)
t5_mask = torch.cat([t5_mask, torch.zeros(512 - t5_mask.shape[0])], dim=0)
else:
t5_embedding = t5_embedding[:512]
t5_mask = t5_mask[:512]
t5_embeddings.append(t5_embedding)
t5_masks.append(t5_mask)
caption_viewid = self.caption_view_idx_map[view_index]
view_indices_conditioning.append(torch.ones(video.shape[1]) * caption_viewid)
if self.ctrl_type:
v_ctrl_data = self._load_control_data(
{
"ctrl_path": os.path.join(
self.dataset_dir,
self.ctrl_data_pth_config["folder"],
view_key,
f"{video_name}.{self.ctrl_data_pth_config['format']}",
)
if self.ctrl_data_pth_config["folder"] is not None
else None,
"frame_ids": frame_ids,
}
)
if v_ctrl_data is None: # Control data loading failed
raise Exception("Failed to load v_ctrl_data")
ctrl_videos.append(v_ctrl_data[self.ctrl_type]["video"])
video = torch.cat(videos, dim=1)
ctrl_videos = torch.cat(ctrl_videos, dim=1)
t5_embedding = torch.cat(t5_embeddings, dim=0)
view_indices_conditioning = torch.cat(view_indices_conditioning, dim=0)
# Basic data
data["video"] = video
data["video_name"] = video_name
data["aspect_ratio"] = aspect_ratio
data["t5_text_embeddings"] = t5_embedding
data["t5_text_mask"] = torch.cat(t5_masks)
data["view_indices"] = view_indices_conditioning.contiguous()
data["frame_repeat"] = torch.zeros(len(view_indices))
# Add metadata
data["fps"] = fps
data["frame_start"] = frame_ids[0]
data["frame_end"] = frame_ids[-1] + 1
data["num_frames"] = self.sequence_length
data["image_size"] = torch.tensor([704, 1280, 704, 1280])
data["padding_mask"] = torch.zeros(1, 704, 1280)
data[self.ctrl_type] = dict()
data[self.ctrl_type]["video"] = ctrl_videos
# The ctrl_data above is the 'raw' data loaded (e.g. a loaded lidar pkl).
# Next, we process it into the control input "video" tensor that the model expects.
# This is done in the augmentor.
for _, aug_fn in self.augmentor.items():
data = aug_fn(data)
return data
except Exception:
warnings.warn(
f"Invalid data encountered: {self.video_paths[index]}. Skipped "
f"(by randomly sampling another sample in the same dataset)."
)
warnings.warn("FULL TRACEBACK:")
warnings.warn(traceback.format_exc())
if _ == max_retries - 1:
raise RuntimeError(f"Failed to load data after {max_retries} attempts")
index = np.random.randint(len(self.video_paths))
return
if __name__ == "__main__":
"""
Sanity check for the dataset.
"""
control_input_key = "control_input_lidar"
visualize_control_input = True
dataset = AVTransferDataset(
dataset_dir="datasets/waymo_transfer1",
view_keys=["pinhole_front"],
hint_key=control_input_key,
num_frames=121,
resolution="720",
is_train=True,
)
print("finished init dataset")
indices = [0, 12, 100, -1]
for idx in indices:
data = dataset[idx]
print(
(
f"{idx=} "
f"{data['frame_start']=}\n"
f"{data['frame_end']=}\n"
f"{data['video'].sum()=}\n"
f"{data['video'].shape=}\n"
f"{data[control_input_key].shape=}\n" # should match the video shape
f"{data['video_name']=}\n"
f"{data['t5_text_embeddings'].shape=}\n"
"---"
)
)
if visualize_control_input:
import imageio
control_input_tensor = data[control_input_key].permute(1, 2, 3, 0).cpu().numpy()
video_name = f"{control_input_key}.mp4"
imageio.mimsave(video_name, control_input_tensor, fps=24)
|