File size: 55,224 Bytes
226c7c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74308ee
226c7c9
 
 
 
 
 
 
 
 
 
 
 
 
74308ee
226c7c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17d970d
226c7c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import importlib
import json
import os
from contextlib import contextmanager
from typing import Any, Dict, List, NamedTuple, Optional, Tuple

import cv2
import einops
import imageio
import numpy as np
import torch
import torchvision.transforms.functional as transforms_F
from einops import rearrange

from cosmos_transfer1.auxiliary.guardrail.common.io_utils import save_video
from cosmos_transfer1.checkpoints import (
    DEPTH2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
    EDGE2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
    EDGE2WORLD_CONTROLNET_DISTILLED_CHECKPOINT_PATH,
    HDMAP2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
    KEYPOINT2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
    LIDAR2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
    SEG2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
    UPSCALER_CONTROLNET_7B_CHECKPOINT_PATH,
    VIS2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
    SV2MV_t2w_HDMAP2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
    SV2MV_t2w_LIDAR2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
    SV2MV_v2w_HDMAP2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
    SV2MV_v2w_LIDAR2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
)
from cosmos_transfer1.diffusion.config.transfer.augmentors import BilateralOnlyBlurAugmentorConfig
from cosmos_transfer1.diffusion.datasets.augmentors.control_input import get_augmentor_for_eval
from cosmos_transfer1.diffusion.model.model_t2w import DiffusionT2WModel
from cosmos_transfer1.diffusion.model.model_v2w import DiffusionV2WModel
from cosmos_transfer1.diffusion.model.model_v2w_multiview import DiffusionV2WMultiviewModel
from cosmos_transfer1.utils import log
from cosmos_transfer1.utils.config_helper import get_config_module, override
from cosmos_transfer1.utils.io import load_from_fileobj

TORCH_VERSION: Tuple[int, ...] = tuple(int(x) for x in torch.__version__.split(".")[:2])
if TORCH_VERSION >= (1, 11):
    from torch.ao import quantization
    from torch.ao.quantization import FakeQuantizeBase, ObserverBase
elif (
    TORCH_VERSION >= (1, 8)
    and hasattr(torch.quantization, "FakeQuantizeBase")
    and hasattr(torch.quantization, "ObserverBase")
):
    from torch import quantization
    from torch.quantization import FakeQuantizeBase, ObserverBase

DEFAULT_AUGMENT_SIGMA = 0.001
NUM_MAX_FRAMES = 5000
VIDEO_RES_SIZE_INFO = {
    "1,1": (960, 960),
    "4,3": (960, 704),
    "3,4": (704, 960),
    "16,9": (1280, 704),
    "9,16": (704, 1280),
}

# Default model names for each control type
default_model_names = {
    "vis": VIS2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
    "seg": SEG2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
    "edge": EDGE2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
    "depth": DEPTH2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
    "keypoint": KEYPOINT2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
    "upscale": UPSCALER_CONTROLNET_7B_CHECKPOINT_PATH,
    "hdmap": HDMAP2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
    "lidar": LIDAR2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
}

default_distilled_model_names = {
    "edge": EDGE2WORLD_CONTROLNET_DISTILLED_CHECKPOINT_PATH,
}


class _IncompatibleKeys(
    NamedTuple(
        "IncompatibleKeys",
        [
            ("missing_keys", List[str]),
            ("unexpected_keys", List[str]),
            ("incorrect_shapes", List[Tuple[str, Tuple[int], Tuple[int]]]),
        ],
    )
):
    pass


def non_strict_load_model(model: torch.nn.Module, checkpoint_state_dict: dict) -> _IncompatibleKeys:
    """Load a model checkpoint with non-strict matching, handling shape mismatches.

    Args:
        model (torch.nn.Module): Model to load weights into
        checkpoint_state_dict (dict): State dict from checkpoint

    Returns:
        _IncompatibleKeys: Named tuple containing:
            - missing_keys: Keys present in model but missing from checkpoint
            - unexpected_keys: Keys present in checkpoint but not in model
            - incorrect_shapes: Keys with mismatched tensor shapes

    The function handles special cases like:
    - Uninitialized parameters
    - Quantization observers
    - TransformerEngine FP8 states
    """
    # workaround https://github.com/pytorch/pytorch/issues/24139
    model_state_dict = model.state_dict()
    incorrect_shapes = []
    for k in list(checkpoint_state_dict.keys()):
        if k in model_state_dict:
            if "_extra_state" in k:  # Key introduced by TransformerEngine for FP8
                log.debug(f"Skipping key {k} introduced by TransformerEngine for FP8 in the checkpoint.")
                continue
            model_param = model_state_dict[k]
            # Allow mismatch for uninitialized parameters
            if TORCH_VERSION >= (1, 8) and isinstance(model_param, torch.nn.parameter.UninitializedParameter):
                continue
            if not isinstance(model_param, torch.Tensor):
                raise ValueError(
                    f"Find non-tensor parameter {k} in the model. type: {type(model_param)} {type(checkpoint_state_dict[k])}, please check if this key is safe to skip or not."
                )

            shape_model = tuple(model_param.shape)
            shape_checkpoint = tuple(checkpoint_state_dict[k].shape)
            if shape_model != shape_checkpoint:
                has_observer_base_classes = (
                    TORCH_VERSION >= (1, 8)
                    and hasattr(quantization, "ObserverBase")
                    and hasattr(quantization, "FakeQuantizeBase")
                )
                if has_observer_base_classes:
                    # Handle the special case of quantization per channel observers,
                    # where buffer shape mismatches are expected.
                    def _get_module_for_key(model: torch.nn.Module, key: str) -> torch.nn.Module:
                        # foo.bar.param_or_buffer_name -> [foo, bar]
                        key_parts = key.split(".")[:-1]
                        cur_module = model
                        for key_part in key_parts:
                            cur_module = getattr(cur_module, key_part)
                        return cur_module

                    cls_to_skip = (
                        ObserverBase,
                        FakeQuantizeBase,
                    )
                    target_module = _get_module_for_key(model, k)
                    if isinstance(target_module, cls_to_skip):
                        # Do not remove modules with expected shape mismatches
                        # them from the state_dict loading. They have special logic
                        # in _load_from_state_dict to handle the mismatches.
                        continue

                incorrect_shapes.append((k, shape_checkpoint, shape_model))
                checkpoint_state_dict.pop(k)
    incompatible = model.load_state_dict(checkpoint_state_dict, strict=False)
    # Remove keys with "_extra_state" suffix, which are non-parameter items introduced by TransformerEngine for FP8 handling
    missing_keys = [k for k in incompatible.missing_keys if "_extra_state" not in k]
    unexpected_keys = [k for k in incompatible.unexpected_keys if "_extra_state" not in k]
    return _IncompatibleKeys(
        missing_keys=missing_keys,
        unexpected_keys=unexpected_keys,
        incorrect_shapes=incorrect_shapes,
    )


@contextmanager
def skip_init_linear():
    # skip init of nn.Linear
    orig_reset_parameters = torch.nn.Linear.reset_parameters
    torch.nn.Linear.reset_parameters = lambda x: x
    xavier_uniform_ = torch.nn.init.xavier_uniform_
    torch.nn.init.xavier_uniform_ = lambda x: x
    yield
    torch.nn.Linear.reset_parameters = orig_reset_parameters
    torch.nn.init.xavier_uniform_ = xavier_uniform_


def load_model_by_config(
    config_job_name,
    config_file="projects/cosmos_video/config/config.py",
    model_class=DiffusionT2WModel,
    base_checkpoint_dir="",
):
    config_module = get_config_module(config_file)
    config = importlib.import_module(config_module).make_config()
    config = override(config, ["--", f"experiment={config_job_name}"])
    if base_checkpoint_dir != "" and hasattr(config.model, "base_load_from"):
        if hasattr(config.model.base_load_from, "load_path"):
            if config.model.base_load_from.load_path != "":
                config.model.base_load_from.load_path = config.model.base_load_from.load_path.replace(
                    "checkpoints", base_checkpoint_dir
                )
                log.info(
                    f"Model need to load a base model weight, change the loading path from default folder to the {base_checkpoint_dir}"
                )

    # Check that the config is valid
    config.validate()
    # Freeze the config so developers don't change it during training.
    config.freeze()  # type: ignore

    # Initialize model
    with skip_init_linear():
        model = model_class(config.model)
    return model


def load_network_model(model: DiffusionT2WModel, ckpt_path: str):
    if ckpt_path:
        with skip_init_linear():
            model.set_up_model()
        net_state_dict = torch.load(ckpt_path, map_location="cpu", weights_only=False)  # , weights_only=True)
        non_strict_load_model(model.model, net_state_dict)
    else:
        model.set_up_model()
    model.cuda()


def load_tokenizer_model(model: DiffusionT2WModel, tokenizer_dir: str):
    with skip_init_linear():
        model.set_up_tokenizer(tokenizer_dir)
    model.cuda()


def prepare_data_batch(
    height: int,
    width: int,
    num_frames: int,
    fps: int,
    prompt_embedding: torch.Tensor,
    negative_prompt_embedding: Optional[torch.Tensor] = None,
):
    """Prepare input batch tensors for video generation.

    Args:
        height (int): Height of video frames
        width (int): Width of video frames
        num_frames (int): Number of frames to generate
        fps (int): Frames per second
        prompt_embedding (torch.Tensor): Encoded text prompt embeddings
        negative_prompt_embedding (torch.Tensor, optional): Encoded negative prompt embeddings

    Returns:
        dict: Batch dictionary containing:
            - video: Zero tensor of target video shape
            - t5_text_mask: Attention mask for text embeddings
            - image_size: Target frame dimensions
            - fps: Target frame rate
            - num_frames: Number of frames
            - padding_mask: Frame padding mask
            - t5_text_embeddings: Prompt embeddings
            - neg_t5_text_embeddings: Negative prompt embeddings (if provided)
            - neg_t5_text_mask: Mask for negative embeddings (if provided)
    """
    # Create base data batch
    data_batch = {
        "video": torch.zeros((1, 3, num_frames, height, width), dtype=torch.uint8).cuda(),
        "t5_text_mask": torch.ones(1, 512, dtype=torch.bfloat16).cuda(),
        "image_size": torch.tensor([[height, width, height, width]] * 1, dtype=torch.bfloat16).cuda(),
        "fps": torch.tensor([fps] * 1, dtype=torch.bfloat16).cuda(),
        "num_frames": torch.tensor([num_frames] * 1, dtype=torch.bfloat16).cuda(),
        "padding_mask": torch.zeros((1, 1, height, width), dtype=torch.bfloat16).cuda(),
    }

    # Handle text embeddings

    t5_embed = prompt_embedding.to(dtype=torch.bfloat16).cuda()
    data_batch["t5_text_embeddings"] = t5_embed

    if negative_prompt_embedding is not None:
        neg_t5_embed = negative_prompt_embedding.to(dtype=torch.bfloat16).cuda()
        data_batch["neg_t5_text_embeddings"] = neg_t5_embed
        data_batch["neg_t5_text_mask"] = torch.ones(1, 512, dtype=torch.bfloat16).cuda()

    return data_batch


def get_video_batch(model, prompt_embedding, negative_prompt_embedding, height, width, fps, num_video_frames):
    """Prepare complete input batch for video generation including latent dimensions.

    Args:
        model: Diffusion model instance
        prompt_embedding (torch.Tensor): Text prompt embeddings
        negative_prompt_embedding (torch.Tensor): Negative prompt embeddings
        height (int): Output video height
        width (int): Output video width
        fps (int): Output video frame rate
        num_video_frames (int): Number of frames to generate

    Returns:
        tuple:
            - data_batch (dict): Complete model input batch
            - state_shape (list): Shape of latent state [C,T,H,W] accounting for VAE compression
    """
    raw_video_batch = prepare_data_batch(
        height=height,
        width=width,
        num_frames=num_video_frames,
        fps=fps,
        prompt_embedding=prompt_embedding,
        negative_prompt_embedding=negative_prompt_embedding,
    )
    state_shape = [
        model.tokenizer.channel,
        model.tokenizer.get_latent_num_frames(num_video_frames),
        height // model.tokenizer.spatial_compression_factor,
        width // model.tokenizer.spatial_compression_factor,
    ]
    return raw_video_batch, state_shape


def resize_video(video_np, h, w, interpolation=cv2.INTER_AREA):
    """Resize video frames to the specified height and width."""
    video_np = video_np[0].transpose((1, 2, 3, 0))  # Convert to T x H x W x C
    t = video_np.shape[0]
    resized_video = np.zeros((t, h, w, 3), dtype=np.uint8)
    for i in range(t):
        resized_video[i] = cv2.resize(video_np[i], (w, h), interpolation=interpolation)
    return resized_video.transpose((3, 0, 1, 2))[None]  # Convert back to B x C x T x H x W


def detect_aspect_ratio(img_size: tuple[int]):
    """Function for detecting the closest aspect ratio."""

    _aspect_ratios = np.array([(16 / 9), (4 / 3), 1, (3 / 4), (9 / 16)])
    _aspect_ratio_keys = ["16,9", "4,3", "1,1", "3,4", "9,16"]
    w, h = img_size
    current_ratio = w / h
    closest_aspect_ratio = np.argmin((_aspect_ratios - current_ratio) ** 2)
    return _aspect_ratio_keys[closest_aspect_ratio]


def get_upscale_size(orig_size: tuple[int], aspect_ratio: str, upscale_factor: int = 3, patch_overlap: int = 256):
    patch_w, patch_h = orig_size
    if aspect_ratio == "16,9" or aspect_ratio == "4,3":
        ratio = int(aspect_ratio.split(",")[1]) / int(aspect_ratio.split(",")[0])
        target_w = patch_w * upscale_factor - patch_overlap
        target_h = patch_h * upscale_factor - int(patch_overlap * ratio)
    elif aspect_ratio == "9,16" or aspect_ratio == "3,4":
        ratio = int(aspect_ratio.split(",")[0]) / int(aspect_ratio.split(",")[1])
        target_h = patch_h * upscale_factor - patch_overlap
        target_w = patch_w * upscale_factor - int(patch_overlap * ratio)
    else:
        target_h = patch_h * upscale_factor - patch_overlap
        target_w = patch_w * upscale_factor - patch_overlap
    return target_w, target_h


def read_and_resize_input(input_control_path, num_total_frames, interpolation):
    control_input, fps = read_video_or_image_into_frames_BCTHW(
        input_control_path,
        normalize=False,  # s.t. output range is [0, 255]
        max_frames=num_total_frames,
        also_return_fps=True,
    )  # BCTHW
    aspect_ratio = detect_aspect_ratio((control_input.shape[-1], control_input.shape[-2]))
    w, h = VIDEO_RES_SIZE_INFO[aspect_ratio]
    control_input = resize_video(control_input, h, w, interpolation=interpolation)  # BCTHW, range [0, 255]
    control_input = torch.from_numpy(control_input[0])  # CTHW, range [0, 255]
    return control_input, fps, aspect_ratio


def get_video_batch_for_multiview_model(
    model, prompt_embedding, height, width, fps, num_video_frames, frame_repeat_negative_condition
):
    """Prepare complete input batch for video generation including latent dimensions.

    Args:
        model: Diffusion model instance
        prompt_embedding list(torch.Tensor): Text prompt embeddings
        height (int): Output video height
        width (int): Output video width
        fps (int): Output video frame rate
        num_video_frames (int): Number of frames to generate
        frame_repeat_negative_condition (int): Number of frames to generate

    Returns:
        tuple:
            - data_batch (dict): Complete model input batch
            - state_shape (list): Shape of latent state [C,T,H,W] accounting for VAE compression
    """
    n_views = len(prompt_embedding)
    prompt_embedding = einops.rearrange(prompt_embedding, "n t d -> (n t) d").unsqueeze(0)
    raw_video_batch = prepare_data_batch(
        height=height,
        width=width,
        num_frames=num_video_frames,
        fps=fps,
        prompt_embedding=prompt_embedding,
    )
    if frame_repeat_negative_condition != -1:
        frame_repeat = torch.zeros(n_views)
        frame_repeat[-1] = frame_repeat_negative_condition
        frame_repeat[-2] = frame_repeat_negative_condition
        raw_video_batch["frame_repeat"] = frame_repeat.unsqueeze(0).to(dtype=torch.bfloat16).cuda()
    state_shape = [
        model.tokenizer.channel,
        model.tokenizer.get_latent_num_frames(int(num_video_frames / n_views)) * n_views,
        height // model.tokenizer.spatial_compression_factor,
        width // model.tokenizer.spatial_compression_factor,
    ]
    return raw_video_batch, state_shape


def get_ctrl_batch_mv(H, W, data_batch, num_total_frames, control_inputs, num_views, num_video_frames):
    # Initialize control input dictionary
    control_input_dict = {k: v for k, v in data_batch.items()}
    control_weights = []
    hint_keys = []
    for hint_key, control_info in control_inputs.items():
        if hint_key not in valid_hint_keys:
            continue
        if "input_control" in control_info:
            cond_videos = []
            for in_file in control_info["input_control"]:
                log.info(f"reading control input {in_file} for hint {hint_key}")
                cond_vid, fps = read_video_or_image_into_frames_BCTHW(
                    in_file,
                    normalize=False,  # s.t. output range is [0, 255]
                    max_frames=num_total_frames,
                    also_return_fps=True,
                )
                cond_vid = resize_video(cond_vid, H, W, interpolation=cv2.INTER_LINEAR)
                cond_vid = torch.from_numpy(cond_vid[0])

                cond_videos.append(cond_vid)

            input_frames = torch.cat(cond_videos, dim=1)
            control_input_dict[f"control_input_{hint_key}"] = input_frames
            hint_keys.append(hint_key)
        control_weights.append(control_info["control_weight"])

    target_w, target_h = W, H
    hint_key = "control_input_" + "_".join(hint_keys)
    add_control_input = get_augmentor_for_eval(input_key="video", output_key=hint_key)

    if len(control_input_dict):
        control_input = add_control_input(control_input_dict)[hint_key]
        if control_input.ndim == 4:
            control_input = control_input[None]
        control_input = control_input.bfloat16() / 255 * 2 - 1
        control_weights = load_spatial_temporal_weights(
            control_weights, B=1, T=num_total_frames, H=target_h, W=target_w, patch_h=H, patch_w=W
        )
        data_batch["control_weight"] = control_weights

        if len(control_inputs) > 1:  # Multicontrol enabled
            data_batch["hint_key"] = "control_input_multi"
            data_batch["control_input_multi"] = control_input
        else:  # Single-control case
            data_batch["hint_key"] = hint_key
            data_batch[hint_key] = control_input

    data_batch["target_h"], data_batch["target_w"] = target_h // 8, target_w // 8
    data_batch["video"] = torch.zeros((1, 3, 57, H, W), dtype=torch.uint8).cuda()  # ?????
    data_batch["image_size"] = torch.tensor([[H, W, H, W]] * 1, dtype=torch.bfloat16).cuda()
    data_batch["padding_mask"] = torch.zeros((1, 1, H, W), dtype=torch.bfloat16).cuda()

    # add view indices for post-train model
    if num_views == 5:
        mapped_indices = [0, 1, 2, 4, 5]
        view_indices_conditioning = []
        for v_index in mapped_indices:
            view_indices_conditioning.append(torch.ones(num_video_frames, device="cuda") * v_index)
        view_indices_conditioning = torch.cat(view_indices_conditioning, dim=0)
        data_batch["view_indices"] = view_indices_conditioning.unsqueeze(0).contiguous()

    return data_batch


def get_batched_ctrl_batch(
    model,
    prompt_embeddings,  # [B, ...]
    negative_prompt_embeddings,  # [B, ...] or None
    height,
    width,
    fps,
    num_video_frames,
    input_video_paths,  # List[str], length B
    control_inputs_list,  # List[dict], length B
    blur_strength,
    canny_threshold,
):
    """
    Create a fully batched data_batch for video generation, including all control and video inputs.

    Args:
        model: The diffusion model instance.
        prompt_embeddings: [B, ...] tensor of prompt embeddings.
        negative_prompt_embeddings: [B, ...] tensor of negative prompt embeddings or None.
        height, width, fps, num_video_frames: Video parameters.
        input_video_paths: List of input video paths, length B.
        control_inputs_list: List of control input dicts, length B.
        blur_strength, canny_threshold: ControlNet augmentation parameters.

    Returns:
        data_batch: Dict with all fields batched along dim 0 (batch dimension).
        state_shape: List describing the latent state shape.
    """
    B = len(input_video_paths)

    def prepare_single_data_batch(b):
        data_batch = {
            "video": torch.zeros((1, 3, num_video_frames, height, width), dtype=torch.uint8).cuda(),
            "t5_text_mask": torch.ones(1, 512, dtype=torch.bfloat16).cuda(),
            "image_size": torch.tensor([[height, width, height, width]], dtype=torch.bfloat16).cuda(),
            "fps": torch.tensor([fps], dtype=torch.bfloat16).cuda(),
            "num_frames": torch.tensor([num_video_frames], dtype=torch.bfloat16).cuda(),
            "padding_mask": torch.zeros((1, 1, height, width), dtype=torch.bfloat16).cuda(),
            "t5_text_embeddings": prompt_embeddings[b : b + 1].to(dtype=torch.bfloat16).cuda(),
        }
        if negative_prompt_embeddings is not None:
            data_batch["neg_t5_text_embeddings"] = negative_prompt_embeddings[b : b + 1].to(dtype=torch.bfloat16).cuda()
            data_batch["neg_t5_text_mask"] = torch.ones(1, 512, dtype=torch.bfloat16).cuda()
        return data_batch

    # Prepare and process each sample
    single_batches = []
    for b in range(B):
        single_data_batch = prepare_single_data_batch(b)
        processed = get_ctrl_batch(
            model,
            single_data_batch,
            num_video_frames,
            input_video_paths[b],
            control_inputs_list[b],
            blur_strength,
            canny_threshold,
        )
        single_batches.append(processed)

    # Merge all single-sample batches into a batched data_batch
    batched_data_batch = {}
    for k in single_batches[0]:
        if isinstance(single_batches[0][k], torch.Tensor):
            if k == "control_weight" and single_batches[0][k].ndim == 6:
                # [num_controls, 1, 1, T, H, W] per sample
                # Stack along dim=1 to get [num_controls, B, 1, T, H, W]
                batched_data_batch[k] = torch.cat([d[k] for d in single_batches], dim=1)
            else:
                # Concatenate along batch dimension (dim=0) for other tensors
                batched_data_batch[k] = torch.cat([d[k] for d in single_batches], dim=0)
        else:
            batched_data_batch[k] = single_batches[0][k]  # assume they're the same for now

    state_shape = [
        model.tokenizer.channel,
        model.tokenizer.get_latent_num_frames(num_video_frames),
        height // model.tokenizer.spatial_compression_factor,
        width // model.tokenizer.spatial_compression_factor,
    ]

    return batched_data_batch, state_shape


def get_ctrl_batch(
    model, data_batch, num_video_frames, input_video_path, control_inputs, blur_strength, canny_threshold
):
    """Prepare complete input batch for video generation including latent dimensions.

    Args:
        model: Diffusion model instance

    Returns:
        - data_batch (dict): Complete model input batch
    """
    state_shape = model.state_shape

    H, W = (
        state_shape[-2] * model.tokenizer.spatial_compression_factor,
        state_shape[-1] * model.tokenizer.spatial_compression_factor,
    )

    # Initialize control input dictionary
    control_input_dict = {k: v for k, v in data_batch.items()}
    num_total_frames = NUM_MAX_FRAMES
    if input_video_path:
        input_frames, fps, aspect_ratio = read_and_resize_input(
            input_video_path, num_total_frames=num_total_frames, interpolation=cv2.INTER_AREA
        )
        _, num_total_frames, H, W = input_frames.shape
        control_input_dict["video"] = input_frames.numpy()  # CTHW
        data_batch["input_video"] = input_frames.bfloat16()[None] / 255 * 2 - 1  # BCTHW
    else:
        data_batch["input_video"] = None
    target_w, target_h = W, H

    control_weights = []
    for hint_key, control_info in control_inputs.items():
        if "input_control" in control_info:
            in_file = control_info["input_control"]
            interpolation = cv2.INTER_NEAREST if hint_key == "seg" else cv2.INTER_LINEAR
            log.info(f"reading control input {in_file} for hint {hint_key}")
            control_input_dict[f"control_input_{hint_key}"], fps, aspect_ratio = read_and_resize_input(
                in_file, num_total_frames=num_total_frames, interpolation=interpolation
            )  # CTHW
            num_total_frames = min(num_total_frames, control_input_dict[f"control_input_{hint_key}"].shape[1])
            target_h, target_w = H, W = control_input_dict[f"control_input_{hint_key}"].shape[2:]
        if hint_key == "upscale":
            orig_size = (W, H)
            target_w, target_h = get_upscale_size(orig_size, aspect_ratio, upscale_factor=3)
            input_resized = resize_video(
                input_frames[None].numpy(),
                target_h,
                target_w,
                interpolation=cv2.INTER_LINEAR,
            )  # BCTHW
            control_input_dict["control_input_upscale"] = split_video_into_patches(
                torch.from_numpy(input_resized), H, W
            )
            data_batch["input_video"] = control_input_dict["control_input_upscale"].bfloat16() / 255 * 2 - 1
        control_weights.append(control_info["control_weight"])

    # Trim all control videos and input video to be the same length.
    log.info(f"Making all control and input videos to be length of {num_total_frames} frames.")
    if len(control_inputs) > 1:
        for hint_key in control_inputs.keys():
            cur_key = f"control_input_{hint_key}"
            if cur_key in control_input_dict:
                control_input_dict[cur_key] = control_input_dict[cur_key][:, :num_total_frames]
    if input_video_path:
        control_input_dict["video"] = control_input_dict["video"][:, :num_total_frames]
        data_batch["input_video"] = data_batch["input_video"][:, :, :num_total_frames]

    hint_key = "control_input_" + "_".join(control_inputs.keys())
    add_control_input = get_augmentor_for_eval(
        input_key="video",
        output_key=hint_key,
        preset_blur_strength=blur_strength,
        preset_canny_threshold=canny_threshold,
        blur_config=BilateralOnlyBlurAugmentorConfig[blur_strength],
    )

    if len(control_input_dict):
        control_input = add_control_input(control_input_dict)[hint_key]
        if control_input.ndim == 4:
            control_input = control_input[None]
        control_input = control_input.bfloat16() / 255 * 2 - 1
        control_weights = load_spatial_temporal_weights(
            control_weights, B=1, T=num_video_frames, H=target_h, W=target_w, patch_h=H, patch_w=W
        )
        data_batch["control_weight"] = control_weights

        if len(control_inputs) > 1:  # Multicontrol enabled
            data_batch["hint_key"] = "control_input_multi"
            data_batch["control_input_multi"] = control_input
        else:  # Single-control case
            data_batch["hint_key"] = hint_key
            data_batch[hint_key] = control_input

    data_batch["target_h"], data_batch["target_w"] = target_h // 8, target_w // 8
    data_batch["video"] = torch.zeros((1, 3, 121, H, W), dtype=torch.uint8).cuda()
    data_batch["image_size"] = torch.tensor([[H, W, H, W]] * 1, dtype=torch.bfloat16).cuda()
    data_batch["padding_mask"] = torch.zeros((1, 1, H, W), dtype=torch.bfloat16).cuda()

    return data_batch


def generate_control_input(input_file_path, save_folder, hint_key, blur_strength, canny_threshold, num_total_frames=10):
    log.info(
        f"Generating control input for {hint_key} with blur strength {blur_strength} and canny threshold {canny_threshold}"
    )
    video_input = read_video_or_image_into_frames_BCTHW(input_file_path, normalize=False)[0, :, :num_total_frames]
    control_input = get_augmentor_for_eval(
        input_key="video",
        output_key=hint_key,
        preset_blur_strength=blur_strength,
        preset_canny_threshold=canny_threshold,
        blur_config=BilateralOnlyBlurAugmentorConfig[blur_strength],
    )
    control_input = control_input({"video": video_input})[hint_key]
    control_input = control_input.numpy().transpose((1, 2, 3, 0))

    output_file_path = f"{save_folder}/{hint_key}_upsampler.mp4"
    log.info(f"Saving control input to {output_file_path}")
    save_video(frames=control_input, fps=24, filepath=output_file_path)
    return output_file_path


def generate_world_from_control(
    model: DiffusionV2WModel,
    state_shape: list[int],
    is_negative_prompt: bool,
    data_batch: dict,
    guidance: float,
    num_steps: int,
    seed: int,
    condition_latent: torch.Tensor,
    num_input_frames: int,
    sigma_max: float,
    x_sigma_max=None,
    augment_sigma=None,
    use_batch_processing: bool = True,
    chunking: Optional[int] = None,
) -> Tuple[np.array, list, list]:
    """Generate video using a conditioning video/image input.

    Args:
        model (DiffusionV2WModel): The diffusion model instance
        state_shape (list[int]): Shape of the latent state [C,T,H,W]
        is_negative_prompt (bool): Whether negative prompt is provided
        data_batch (dict): Batch containing model inputs including text embeddings
        guidance (float): Classifier-free guidance scale for sampling
        num_steps (int): Number of diffusion sampling steps
        seed (int): Random seed for generation
        condition_latent (torch.Tensor): Latent tensor from conditioning video/image file
        num_input_frames (int): Number of input frames
        chunking: Chunking size, if None, chunking is disabled

    Returns:
        np.array: Generated video frames in shape [T,H,W,C], range [0,255]
    """
    assert not model.config.conditioner.video_cond_bool.sample_tokens_start_from_p_or_i, "not supported"

    if augment_sigma is None:
        augment_sigma = DEFAULT_AUGMENT_SIGMA

    b, c, t, h, w = condition_latent.shape
    if condition_latent.shape[2] < state_shape[1]:
        # Padding condition latent to state shape
        condition_latent = torch.cat(
            [
                condition_latent,
                condition_latent.new_zeros(b, c, state_shape[1] - t, h, w),
            ],
            dim=2,
        ).contiguous()
    num_of_latent_condition = compute_num_latent_frames(model, num_input_frames)

    sample = model.generate_samples_from_batch(
        data_batch,
        guidance=guidance,
        state_shape=[c, t, h, w],
        num_steps=num_steps,
        is_negative_prompt=is_negative_prompt,
        seed=seed,
        condition_latent=condition_latent,
        num_condition_t=num_of_latent_condition,
        condition_video_augment_sigma_in_inference=augment_sigma,
        x_sigma_max=x_sigma_max,
        sigma_max=sigma_max,
        target_h=data_batch["target_h"],
        target_w=data_batch["target_w"],
        patch_h=h,
        patch_w=w,
        use_batch_processing=use_batch_processing,
        chunking=chunking,
    )
    return sample


def read_video_or_image_into_frames_BCTHW(
    input_path: str,
    input_path_format: str = "mp4",
    H: int = None,
    W: int = None,
    normalize: bool = True,
    max_frames: int = -1,
    also_return_fps: bool = False,
) -> torch.Tensor:
    """Read video or image file and convert to tensor format.

    Args:
        input_path (str): Path to input video/image file
        input_path_format (str): Format of input file (default: "mp4")
        H (int, optional): Height to resize frames to
        W (int, optional): Width to resize frames to
        normalize (bool): Whether to normalize pixel values to [-1,1] (default: True)
        max_frames (int): Maximum number of frames to read (-1 for all frames)
        also_return_fps (bool): Whether to return fps along with frames

    Returns:
        torch.Tensor | tuple: Video tensor in shape [B,C,T,H,W], optionally with fps if requested
    """
    log.debug(f"Reading video from {input_path}")

    loaded_data = load_from_fileobj(input_path, format=input_path_format)
    frames, meta_data = loaded_data
    if input_path.endswith(".png") or input_path.endswith(".jpg") or input_path.endswith(".jpeg"):
        frames = np.array(frames[0])  # HWC, [0,255]
        if frames.shape[-1] > 3:  # RGBA, set the transparent to white
            # Separate the RGB and Alpha channels
            rgb_channels = frames[..., :3]
            alpha_channel = frames[..., 3] / 255.0  # Normalize alpha channel to [0, 1]

            # Create a white background
            white_bg = np.ones_like(rgb_channels) * 255  # White background in RGB

            # Blend the RGB channels with the white background based on the alpha channel
            frames = (rgb_channels * alpha_channel[..., None] + white_bg * (1 - alpha_channel[..., None])).astype(
                np.uint8
            )
        frames = [frames]
        fps = 0
    else:
        fps = int(meta_data.get("fps"))
    if max_frames != -1:
        frames = frames[:max_frames]
    input_tensor = np.stack(frames, axis=0)
    input_tensor = einops.rearrange(input_tensor, "t h w c -> t c h w")
    if normalize:
        input_tensor = input_tensor / 128.0 - 1.0
        input_tensor = torch.from_numpy(input_tensor).bfloat16()  # TCHW
        log.debug(f"Raw data shape: {input_tensor.shape}")
        if H is not None and W is not None:
            input_tensor = transforms_F.resize(
                input_tensor,
                size=(H, W),  # type: ignore
                interpolation=transforms_F.InterpolationMode.BICUBIC,
                antialias=True,
            )
    input_tensor = einops.rearrange(input_tensor, "(b t) c h w -> b c t h w", b=1)
    if normalize:
        input_tensor = input_tensor.to("cuda")
    log.debug(f"Load shape {input_tensor.shape} value {input_tensor.min()}, {input_tensor.max()}")
    if also_return_fps:
        return input_tensor, fps
    return input_tensor


def compute_num_latent_frames(model: DiffusionV2WModel, num_input_frames: int, downsample_factor=8) -> int:
    """This function computes the number of latent frames given the number of input frames.
    Args:
        model (DiffusionV2WModel): video generation model
        num_input_frames (int): number of input frames
        downsample_factor (int): downsample factor for temporal reduce
    Returns:
        int: number of latent frames
    """
    # First find how many vae chunks are contained with in num_input_frames
    num_latent_frames = (
        num_input_frames
        // model.tokenizer.video_vae.pixel_chunk_duration
        * model.tokenizer.video_vae.latent_chunk_duration
    )
    # Then handle the remainder
    if num_input_frames % model.tokenizer.video_vae.pixel_chunk_duration == 1:
        num_latent_frames += 1
    elif num_input_frames % model.tokenizer.video_vae.pixel_chunk_duration > 1:
        assert (
            num_input_frames % model.tokenizer.video_vae.pixel_chunk_duration - 1
        ) % downsample_factor == 0, f"num_input_frames % model.tokenizer.video_vae.pixel_chunk_duration - 1 must be divisible by {downsample_factor}"
        num_latent_frames += (
            1 + (num_input_frames % model.tokenizer.video_vae.pixel_chunk_duration - 1) // downsample_factor
        )

    return num_latent_frames


def create_condition_latent_from_input_frames(
    model: DiffusionV2WModel,
    input_frames: torch.Tensor,
    num_frames_condition: int = 25,
    from_back: bool = True,
):
    """Create condition latent for video generation from input frames.

    Takes the last num_frames_condition frames from input as conditioning.

    Args:
        model (DiffusionV2WModel): Video generation model
        input_frames (torch.Tensor): Input video tensor [B,C,T,H,W], range [-1,1]
        num_frames_condition (int): Number of frames to use for conditioning

    Returns:
        tuple: (condition_latent, encode_input_frames) where:
            - condition_latent (torch.Tensor): Encoded latent condition [B,C,T,H,W]
            - encode_input_frames (torch.Tensor): Padded input frames used for encoding
    """
    B, C, T, H, W = input_frames.shape
    num_frames_encode = (
        model.tokenizer.pixel_chunk_duration
    )  # (model.state_shape[1] - 1) / model.vae.pixel_chunk_duration + 1
    log.debug(
        f"num_frames_encode not set, set it based on pixel chunk duration and model state shape: {num_frames_encode}"
    )

    log.debug(
        f"Create condition latent from input frames {input_frames.shape}, value {input_frames.min()}, {input_frames.max()}, dtype {input_frames.dtype}"
    )

    assert (
        input_frames.shape[2] >= num_frames_condition
    ), f"input_frames not enough for condition, require at least {num_frames_condition}, get {input_frames.shape[2]}, {input_frames.shape}"
    assert (
        num_frames_encode >= num_frames_condition
    ), f"num_frames_encode should be larger than num_frames_condition, get {num_frames_encode}, {num_frames_condition}"

    # Put the conditioal frames to the begining of the video, and pad the end with zero
    if model.config.conditioner.video_cond_bool.condition_location == "first_and_last_1":
        condition_frames_first = input_frames[:, :, :num_frames_condition]
        condition_frames_last = input_frames[:, :, -num_frames_condition:]
        padding_frames = condition_frames_first.new_zeros(B, C, num_frames_encode + 1 - 2 * num_frames_condition, H, W)
        encode_input_frames = torch.cat([condition_frames_first, padding_frames, condition_frames_last], dim=2)
    elif not from_back:
        condition_frames = input_frames[:, :, :num_frames_condition]
        padding_frames = condition_frames.new_zeros(B, C, num_frames_encode - num_frames_condition, H, W)
        encode_input_frames = torch.cat([condition_frames, padding_frames], dim=2)
    else:
        condition_frames = input_frames[:, :, -num_frames_condition:]
        padding_frames = condition_frames.new_zeros(B, C, num_frames_encode - num_frames_condition, H, W)
        encode_input_frames = torch.cat([condition_frames, padding_frames], dim=2)

    log.info(
        f"create latent with input shape {encode_input_frames.shape} including padding {num_frames_encode - num_frames_condition} at the end"
    )
    if hasattr(model, "n_views") and encode_input_frames.shape[0] == model.n_views:
        encode_input_frames = einops.rearrange(encode_input_frames, "(B V) C T H W -> B C (V T) H W", V=model.n_views)
        latent = model.encode(encode_input_frames)
    elif model.config.conditioner.video_cond_bool.condition_location == "first_and_last_1":
        latent1 = model.encode(encode_input_frames[:, :, :num_frames_encode])  # BCTHW
        latent2 = model.encode(encode_input_frames[:, :, num_frames_encode:])
        latent = torch.cat([latent1, latent2], dim=2)  # BCTHW
    elif encode_input_frames.shape[0] == 1:
        # treat as single view video
        latent = model.tokenizer.encode(encode_input_frames) * model.sigma_data
    else:
        raise ValueError(
            f"First dimension of encode_input_frames {encode_input_frames.shape[0]} does not match "
            f"model.n_views or model.n_views is not defined and first dimension is not 1"
        )
    return latent, encode_input_frames


def compute_num_frames_condition(model: DiffusionV2WModel, num_of_latent_overlap: int, downsample_factor=8) -> int:
    """This function computes the number of condition pixel frames given the number of latent frames to overlap.
    Args:
        model (ExtendDiffusionModel): video generation model
        num_of_latent_overlap (int): number of latent frames to overlap
        downsample_factor (int): downsample factor for temporal reduce
    Returns:
        int: number of condition frames in output space
    """
    if getattr(model.tokenizer.video_vae, "is_casual", True):
        # For casual model
        num_frames_condition = (
            num_of_latent_overlap
            // model.tokenizer.video_vae.latent_chunk_duration
            * model.tokenizer.video_vae.pixel_chunk_duration
        )
        if num_of_latent_overlap % model.tokenizer.video_vae.latent_chunk_duration == 1:
            num_frames_condition += 1
        elif num_of_latent_overlap % model.tokenizer.video_vae.latent_chunk_duration > 1:
            num_frames_condition += (
                1 + (num_of_latent_overlap % model.tokenizer.video_vae.latent_chunk_duration - 1) * downsample_factor
            )
    else:
        num_frames_condition = num_of_latent_overlap * downsample_factor

    return num_frames_condition


def get_condition_latent(
    model: DiffusionV2WModel,
    input_image_or_video_path: str,
    num_input_frames: int = 1,
    state_shape: list[int] = None,
    frame_index: int = 0,
    frame_stride: int = 1,
    from_back: bool = True,
    start_frame: int = 0,
) -> torch.Tensor:
    """Get condition latent from input image/video file.

    Args:
        model (DiffusionV2WModel): Video generation model
        input_image_or_video_path (str): Path to conditioning image/video
        num_input_frames (int): Number of input frames for video2world prediction

    Returns:
        tuple: (condition_latent, input_frames) where:
            - condition_latent (torch.Tensor): Encoded latent condition [B,C,T,H,W]
            - input_frames (torch.Tensor): Input frames tensor [B,C,T,H,W]
    """
    if state_shape is None:
        state_shape = model.state_shape
    assert num_input_frames > 0, "num_input_frames must be greater than 0"

    H, W = (
        state_shape[-2] * model.tokenizer.spatial_compression_factor,
        state_shape[-1] * model.tokenizer.spatial_compression_factor,
    )

    input_path_format = input_image_or_video_path.split(".")[-1]
    input_frames = read_video_or_image_into_frames_BCTHW(
        input_image_or_video_path,
        input_path_format=input_path_format,
        H=H,
        W=W,
    )
    if model.config.conditioner.video_cond_bool.condition_location == "first_and_last_1":
        start_frame = frame_index * frame_stride
        end_frame = (frame_index + 1) * frame_stride
        curr_input_frames = torch.cat(
            [input_frames[:, :, start_frame : start_frame + 1], input_frames[:, :, end_frame : end_frame + 1]], dim=2
        ).contiguous()  # BCTHW
        num_of_latent_condition = 1
        num_frames_condition = compute_num_frames_condition(
            model, num_of_latent_condition, downsample_factor=model.tokenizer.temporal_compression_factor
        )

        condition_latent, _ = create_condition_latent_from_input_frames(model, curr_input_frames, num_frames_condition)
        condition_latent = condition_latent.to(torch.bfloat16)
        return condition_latent
    input_frames = input_frames[:, :, start_frame:, :, :]
    condition_latent, _ = create_condition_latent_from_input_frames(
        model, input_frames, num_input_frames, from_back=from_back
    )
    condition_latent = condition_latent.to(torch.bfloat16)

    return condition_latent


def check_input_frames(input_path: str, required_frames: int) -> bool:
    """Check if input video/image has sufficient frames.

    Args:
        input_path: Path to input video or image
        required_frames: Number of required frames

    Returns:
        np.ndarray of frames if valid, None if invalid
    """
    if input_path.endswith((".jpg", ".jpeg", ".png")):
        if required_frames > 1:
            log.error(f"Input ({input_path}) is an image but {required_frames} frames are required")
            return False
        return True  # Let the pipeline handle image loading
    # For video input
    try:
        vid = imageio.get_reader(input_path, "ffmpeg")
        frame_count = vid.count_frames()

        if frame_count < required_frames:
            log.error(f"Input video has {frame_count} frames but {required_frames} frames are required")
            return False
        else:
            return True
    except Exception as e:
        log.error(f"Error reading video file {input_path}: {e}")
        return False


def load_spatial_temporal_weights(weight_paths, B, T, H, W, patch_h, patch_w):
    """
    Load and process spatial-temporal weight maps from .pt files
    Args:
        weight_paths: List of weights that can be scalars, paths to .pt files, or empty strings
        B, T, H, W: Desired tensor dimensions
        patch_h, patch_w: Patch dimensions for splitting
    Returns:
        For all scalar weights: tensor of shape [num_controls]
        For any spatial maps: tensor of shape [num_controls, B, 1, T, H, W]
    """
    # Process each weight path
    weights = []
    has_spatial_weights = False
    for path in weight_paths:
        if not path or (isinstance(path, str) and path.lower() == "none"):
            # Use default weight of 1.0
            w = torch.ones((T, H, W), dtype=torch.bfloat16)
        else:
            try:
                # Try to parse as scalar
                scalar_value = float(path)
                w = torch.full((T, H, W), scalar_value, dtype=torch.bfloat16)
            except ValueError:
                # Not a scalar, must be a path to a weight map
                has_spatial_weights = True
                w = torch.load(path, weights_only=False).to(dtype=torch.bfloat16)  # [T, H, W]
                if w.ndim == 2:  # Spatial only
                    w = w.unsqueeze(0).repeat(T, 1, 1)
                elif w.ndim != 3:
                    raise ValueError(f"Weight map must be 2D or 3D, got shape {w.shape}")

                if w.shape != (T, H, W):
                    w = (
                        torch.nn.functional.interpolate(
                            w.unsqueeze(0).unsqueeze(0),
                            size=(T, H, W),
                            mode="trilinear",
                            align_corners=False,
                        )
                        .squeeze(0)
                        .squeeze(0)
                    )
        w = torch.clamp(w, min=0)
        w = w.unsqueeze(0).unsqueeze(1)
        w = w.expand(B, 1, -1, -1, -1)
        weights.append(w)

    if not has_spatial_weights:
        scalar_weights = [float(w) for w in weight_paths]
        weights_tensor = torch.tensor(scalar_weights, dtype=torch.bfloat16)
        weights_tensor = weights_tensor / (weights_tensor.sum().clip(1))
        return weights_tensor.cuda()

    weights = torch.stack(weights, dim=0).cuda()
    weights = weights / (weights.sum(dim=0, keepdim=True).clip(1))

    # Split into patches if needed
    if patch_h != H or patch_w != W:
        num_controls = len(weights)
        weights = weights.reshape(num_controls * B, 1, T, H, W)
        weights = split_video_into_patches(weights, patch_h, patch_w)
        B_new = weights.shape[0] // num_controls
        weights = weights.reshape(num_controls, B_new, 1, T, H, W)

    return weights


def resize_control_weight_map(control_weight_map, size):
    assert control_weight_map.shape[2] == 1  # [num_control, B, 1, T, H, W]
    weight_map = control_weight_map.squeeze(2)  # [num_control, B, T, H, W]
    T, H, W = size
    if weight_map.shape[2:5] != (T, H, W):
        assert (weight_map.shape[2] == T) or (weight_map.shape[2] == 8 * (T - 1) + 1)
        weight_map_i = [
            torch.nn.functional.interpolate(
                weight_map[:, :, :1],
                size=(1, H, W),
                mode="trilinear",
                align_corners=False,
            )
        ]
        weight_map_i += [
            torch.nn.functional.interpolate(
                weight_map[:, :, 1:],
                size=(T - 1, H, W),
                mode="trilinear",
                align_corners=False,
            )
        ]
        weight_map = torch.cat(weight_map_i, dim=2)
    return weight_map.unsqueeze(2)


def split_video_into_patches(tensor, patch_h, patch_w):
    h, w = tensor.shape[-2:]
    n_img_w = (w - 1) // patch_w + 1
    n_img_h = (h - 1) // patch_h + 1
    overlap_size_h = overlap_size_w = 0
    if n_img_w > 1:
        overlap_size_w = (n_img_w * patch_w - w) // (n_img_w - 1)  # 512 for n=2, 320 for n=4
        assert n_img_w * patch_w - overlap_size_w * (n_img_w - 1) == w
    if n_img_h > 1:
        overlap_size_h = (n_img_h * patch_h - h) // (n_img_h - 1)
        assert n_img_h * patch_h - overlap_size_h * (n_img_h - 1) == h
    p_h = patch_h - overlap_size_h
    p_w = patch_w - overlap_size_w

    patches = []
    for i in range(n_img_h):
        for j in range(n_img_w):
            patches += [tensor[:, :, :, p_h * i : (p_h * i + patch_h), p_w * j : (p_w * j + patch_w)]]
    return torch.cat(patches)


def merge_patches_into_video(imgs, overlap_size_h, overlap_size_w, n_img_h, n_img_w):
    b, c, t, h, w = imgs.shape
    imgs = rearrange(imgs, "(b m n) c t h w -> m n b c t h w", m=n_img_h, n=n_img_w)
    H = n_img_h * h - (n_img_h - 1) * overlap_size_h
    W = n_img_w * w - (n_img_w - 1) * overlap_size_w
    img_sum = torch.zeros((b // (n_img_h * n_img_w), c, t, H, W)).to(imgs)
    mask_sum = torch.zeros((H, W)).to(imgs)

    # Create a linear mask for blending.
    def create_linear_gradient_tensor(H, W, overlap_size_h, overlap_size_w):
        y, x = torch.meshgrid(
            torch.minimum(torch.arange(H), H - torch.arange(H)) / (overlap_size_h + 1e-6),
            torch.minimum(torch.arange(W), W - torch.arange(W)) / (overlap_size_w + 1e-6),
        )
        return torch.clamp(y, 0.01, 1) * torch.clamp(x, 0.01, 1)

    mask_ij = create_linear_gradient_tensor(h, w, overlap_size_h, overlap_size_w).to(imgs)

    for i in range(n_img_h):
        for j in range(n_img_w):
            h_start = i * (h - overlap_size_h)
            w_start = j * (w - overlap_size_w)
            img_sum[:, :, :, h_start : h_start + h, w_start : w_start + w] += (
                imgs[i, j] * mask_ij[None, None, None, :, :]
            )
            mask_sum[h_start : h_start + h, w_start : w_start + w] += mask_ij
    return img_sum / (mask_sum[None, None, None, :, :] + 1e-6)


valid_hint_keys = {"vis", "seg", "edge", "depth", "keypoint", "upscale", "hdmap", "lidar"}


def load_controlnet_specs(cfg) -> Dict[str, Any]:
    with open(cfg.controlnet_specs, "r") as f:
        controlnet_specs_in = json.load(f)

    controlnet_specs = {}
    args = {}

    for hint_key, config in controlnet_specs_in.items():
        if hint_key in valid_hint_keys:
            controlnet_specs[hint_key] = config
        else:
            if type(config) == dict:
                raise ValueError(f"Invalid hint_key: {hint_key}. Must be one of {valid_hint_keys}")
            else:
                args[hint_key] = config
                continue
    return controlnet_specs, args


def validate_controlnet_specs(cfg, controlnet_specs) -> Dict[str, Any]:
    """
    Load and validate controlnet specifications from a JSON file.

    Args:
        json_path (str): Path to the JSON file containing controlnet specs.
        checkpoint_dir (str): Base directory for checkpoint files.

    Returns:
        Dict[str, Any]: Validated and processed controlnet specifications.
    """
    checkpoint_dir = cfg.checkpoint_dir
    sigma_max = cfg.sigma_max
    input_video_path = cfg.input_video_path
    use_distilled = cfg.use_distilled

    for hint_key, config in controlnet_specs.items():
        if hint_key not in valid_hint_keys:
            raise ValueError(f"Invalid hint_key: {hint_key}. Must be one of {valid_hint_keys}")

        if not input_video_path and sigma_max < 80:
            raise ValueError("Must have 'input_video' specified if sigma_max < 80")

        if not input_video_path and "input_control" not in config:
            raise ValueError(
                f"{hint_key} controlnet must have 'input_control' video specified if no 'input_video' specified."
            )

        if "ckpt_path" not in config:
            log.info(f"No checkpoint path specified for {hint_key}. Using default.")
            ckpt_path = os.path.join(checkpoint_dir, default_model_names[hint_key])
            if use_distilled:
                if hint_key in default_distilled_model_names:
                    ckpt_path = os.path.join(checkpoint_dir, default_distilled_model_names[hint_key])
                else:
                    log.info(f"No default distilled checkpoint for {hint_key}. Using full checkpoint")

            config["ckpt_path"] = ckpt_path
            log.info(f"Using default checkpoint path: {config['ckpt_path']}")

        # Regardless whether "control_weight_prompt" is provided (i.e. whether we automatically
        # generate spatiotemporal control weight binary masks), control_weight is needed to.
        if "control_weight" not in config:
            log.warning(f"No control weight specified for {hint_key}. Setting to 0.5.")
            config["control_weight"] = "0.5"
        else:
            # Check if control weight is a path or a scalar
            weight = config["control_weight"]
            if not isinstance(weight, str) or not weight.endswith(".pt"):
                try:
                    # Try converting to float
                    scalar_value = float(weight)
                    if scalar_value < 0:
                        raise ValueError(f"Control weight for {hint_key} must be non-negative.")
                except ValueError:
                    raise ValueError(
                        f"Control weight for {hint_key} must be a valid non-negative float or a path to a .pt file."
                    )

    return controlnet_specs