File size: 16,449 Bytes
226c7c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import copy
import json
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false" # Workaround to suppress MP warning
import sys
from io import BytesIO
import torch
from cosmos_transfer1.checkpoints import (
BASE_7B_CHECKPOINT_AV_SAMPLE_PATH,
BASE_7B_CHECKPOINT_PATH,
EDGE2WORLD_CONTROLNET_DISTILLED_CHECKPOINT_PATH,
)
from cosmos_transfer1.diffusion.inference.inference_utils import load_controlnet_specs, validate_controlnet_specs
from cosmos_transfer1.diffusion.inference.preprocessors import Preprocessors
from cosmos_transfer1.diffusion.inference.world_generation_pipeline import (
DiffusionControl2WorldGenerationPipeline,
DistilledControl2WorldGenerationPipeline,
)
from cosmos_transfer1.utils import log, misc
from cosmos_transfer1.utils.io import read_prompts_from_file, save_video
torch.enable_grad(False)
torch.serialization.add_safe_globals([BytesIO])
def parse_arguments() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Control to world generation demo script", conflict_handler="resolve")
# Add transfer specific arguments
parser.add_argument(
"--prompt",
type=str,
default="The video captures a stunning, photorealistic scene with remarkable attention to detail, giving it a lifelike appearance that is almost indistinguishable from reality. It appears to be from a high-budget 4K movie, showcasing ultra-high-definition quality with impeccable resolution.",
help="prompt which the sampled video condition on",
)
parser.add_argument(
"--negative_prompt",
type=str,
default="The video captures a game playing, with bad crappy graphics and cartoonish frames. It represents a recording of old outdated games. The lighting looks very fake. The textures are very raw and basic. The geometries are very primitive. The images are very pixelated and of poor CG quality. There are many subtitles in the footage. Overall, the video is unrealistic at all.",
help="negative prompt which the sampled video condition on",
)
parser.add_argument(
"--input_video_path",
type=str,
default="",
help="Optional input RGB video path",
)
parser.add_argument(
"--num_input_frames",
type=int,
default=1,
help="Number of conditional frames for long video generation",
choices=[1],
)
parser.add_argument("--sigma_max", type=float, default=70.0, help="sigma_max for partial denoising")
parser.add_argument(
"--blur_strength",
type=str,
default="medium",
choices=["very_low", "low", "medium", "high", "very_high"],
help="blur strength.",
)
parser.add_argument(
"--canny_threshold",
type=str,
default="medium",
choices=["very_low", "low", "medium", "high", "very_high"],
help="blur strength of canny threshold applied to input. Lower means less blur or more detected edges, which means higher fidelity to input.",
)
parser.add_argument(
"--controlnet_specs",
type=str,
help="Path to JSON file specifying multicontrolnet configurations",
required=True,
)
parser.add_argument(
"--is_av_sample", action="store_true", help="Whether the model is an driving post-training model"
)
parser.add_argument(
"--checkpoint_dir", type=str, default="checkpoints", help="Base directory containing model checkpoints"
)
parser.add_argument(
"--tokenizer_dir",
type=str,
default="Cosmos-Tokenize1-CV8x8x8-720p",
help="Tokenizer weights directory relative to checkpoint_dir",
)
parser.add_argument(
"--video_save_name",
type=str,
default="output",
help="Output filename for generating a single video",
)
parser.add_argument(
"--video_save_folder",
type=str,
default="outputs/",
help="Output folder for generating a batch of videos",
)
parser.add_argument(
"--batch_input_path",
type=str,
help="Path to a JSONL file of input prompts for generating a batch of videos",
)
parser.add_argument("--batch_size", type=int, default=1, help="Batch size")
parser.add_argument("--num_steps", type=int, default=35, help="Number of diffusion sampling steps")
parser.add_argument("--guidance", type=float, default=5, help="Classifier-free guidance scale value")
parser.add_argument("--fps", type=int, default=24, help="FPS of the output video")
parser.add_argument("--seed", type=int, default=1, help="Random seed")
parser.add_argument("--num_gpus", type=int, default=1, help="Number of GPUs used to run inference in parallel.")
parser.add_argument(
"--offload_diffusion_transformer",
action="store_true",
help="Offload DiT after inference",
)
parser.add_argument(
"--offload_text_encoder_model",
action="store_true",
help="Offload text encoder model after inference",
)
parser.add_argument(
"--offload_guardrail_models",
action="store_true",
help="Offload guardrail models after inference",
)
parser.add_argument(
"--upsample_prompt",
action="store_true",
help="Upsample prompt using Pixtral upsampler model",
)
parser.add_argument(
"--offload_prompt_upsampler",
action="store_true",
help="Offload prompt upsampler model after inference",
)
parser.add_argument("--use_distilled", action="store_true", help="Use distilled ControlNet model variant")
cmd_args = parser.parse_args()
# Load and parse JSON input
control_inputs, json_args = load_controlnet_specs(cmd_args)
log.info(f"control_inputs: {json.dumps(control_inputs, indent=4)}")
log.info(f"args in json: {json.dumps(json_args, indent=4)}")
# if parameters not set on command line, use the ones from the controlnet_specs
# if both not set use command line defaults
for key in json_args:
if f"--{key}" not in sys.argv:
setattr(cmd_args, key, json_args[key])
log.info(f"final args: {json.dumps(vars(cmd_args), indent=4)}")
return cmd_args, control_inputs
def demo(cfg, control_inputs):
"""Run control-to-world generation demo.
This function handles the main control-to-world generation pipeline, including:
- Setting up the random seed for reproducibility
- Initializing the generation pipeline with the provided configuration
- Processing single or multiple prompts/images/videos from input
- Generating videos from prompts and images/videos
- Saving the generated videos and corresponding prompts to disk
Args:
cfg (argparse.Namespace): Configuration namespace containing:
- Model configuration (checkpoint paths, model settings)
- Generation parameters (guidance, steps, dimensions)
- Input/output settings (prompts/images/videos, save paths)
- Performance options (model offloading settings)
The function will save:
- Generated MP4 video files
- Text files containing the processed prompts
If guardrails block the generation, a critical log message is displayed
and the function continues to the next prompt if available.
"""
control_inputs = validate_controlnet_specs(cfg, control_inputs)
misc.set_random_seed(cfg.seed)
device_rank = 0
process_group = None
if cfg.num_gpus > 1:
from megatron.core import parallel_state
from cosmos_transfer1.utils import distributed
distributed.init()
parallel_state.initialize_model_parallel(context_parallel_size=cfg.num_gpus)
process_group = parallel_state.get_context_parallel_group()
device_rank = distributed.get_rank(process_group)
preprocessors = Preprocessors()
if cfg.use_distilled:
assert not cfg.is_av_sample
checkpoint = EDGE2WORLD_CONTROLNET_DISTILLED_CHECKPOINT_PATH
pipeline = DistilledControl2WorldGenerationPipeline(
checkpoint_dir=cfg.checkpoint_dir,
checkpoint_name=checkpoint,
offload_network=cfg.offload_diffusion_transformer,
offload_text_encoder_model=cfg.offload_text_encoder_model,
offload_guardrail_models=cfg.offload_guardrail_models,
guidance=cfg.guidance,
num_steps=cfg.num_steps,
fps=cfg.fps,
seed=cfg.seed,
num_input_frames=cfg.num_input_frames,
control_inputs=control_inputs,
sigma_max=cfg.sigma_max,
blur_strength=cfg.blur_strength,
canny_threshold=cfg.canny_threshold,
upsample_prompt=cfg.upsample_prompt,
offload_prompt_upsampler=cfg.offload_prompt_upsampler,
process_group=process_group,
)
else:
checkpoint = BASE_7B_CHECKPOINT_AV_SAMPLE_PATH if cfg.is_av_sample else BASE_7B_CHECKPOINT_PATH
# Initialize transfer generation model pipeline
pipeline = DiffusionControl2WorldGenerationPipeline(
checkpoint_dir=cfg.checkpoint_dir,
checkpoint_name=checkpoint,
offload_network=cfg.offload_diffusion_transformer,
offload_text_encoder_model=cfg.offload_text_encoder_model,
offload_guardrail_models=cfg.offload_guardrail_models,
guidance=cfg.guidance,
num_steps=cfg.num_steps,
fps=cfg.fps,
seed=cfg.seed,
num_input_frames=cfg.num_input_frames,
control_inputs=control_inputs,
sigma_max=cfg.sigma_max,
blur_strength=cfg.blur_strength,
canny_threshold=cfg.canny_threshold,
upsample_prompt=cfg.upsample_prompt,
offload_prompt_upsampler=cfg.offload_prompt_upsampler,
process_group=process_group,
)
if cfg.batch_input_path:
log.info(f"Reading batch inputs from path: {cfg.batch_input_path}")
prompts = read_prompts_from_file(cfg.batch_input_path)
else:
# Single prompt case
prompts = [{"prompt": cfg.prompt, "visual_input": cfg.input_video_path}]
batch_size = cfg.batch_size if hasattr(cfg, "batch_size") else 1
if any("upscale" in control_input for control_input in control_inputs) and batch_size > 1:
batch_size = 1
log.info("Setting batch_size=1 as upscale does not support batch generation")
os.makedirs(cfg.video_save_folder, exist_ok=True)
for batch_start in range(0, len(prompts), batch_size):
# Get current batch
batch_prompts = prompts[batch_start : batch_start + batch_size]
actual_batch_size = len(batch_prompts)
# Extract batch data
batch_prompt_texts = [p.get("prompt", None) for p in batch_prompts]
batch_video_paths = [p.get("visual_input", None) for p in batch_prompts]
batch_control_inputs = []
for i, input_dict in enumerate(batch_prompts):
current_prompt = input_dict.get("prompt", None)
current_video_path = input_dict.get("visual_input", None)
if cfg.batch_input_path:
video_save_subfolder = os.path.join(cfg.video_save_folder, f"video_{batch_start+i}")
os.makedirs(video_save_subfolder, exist_ok=True)
else:
video_save_subfolder = cfg.video_save_folder
current_control_inputs = copy.deepcopy(control_inputs)
if "control_overrides" in input_dict:
for hint_key, override in input_dict["control_overrides"].items():
if hint_key in current_control_inputs:
current_control_inputs[hint_key].update(override)
else:
log.warning(f"Ignoring unknown control key in override: {hint_key}")
# if control inputs are not provided, run respective preprocessor (for seg and depth)
log.info("running preprocessor")
preprocessors(
current_video_path,
current_prompt,
current_control_inputs,
video_save_subfolder,
cfg.regional_prompts if hasattr(cfg, "regional_prompts") else None,
)
batch_control_inputs.append(current_control_inputs)
regional_prompts = []
region_definitions = []
if hasattr(cfg, "regional_prompts") and cfg.regional_prompts:
log.info(f"regional_prompts: {cfg.regional_prompts}")
for regional_prompt in cfg.regional_prompts:
regional_prompts.append(regional_prompt["prompt"])
if "region_definitions_path" in regional_prompt:
log.info(f"region_definitions_path: {regional_prompt['region_definitions_path']}")
region_definition_path = regional_prompt["region_definitions_path"]
if isinstance(region_definition_path, str) and region_definition_path.endswith(".json"):
with open(region_definition_path, "r") as f:
region_definitions_json = json.load(f)
region_definitions.extend(region_definitions_json)
else:
region_definitions.append(region_definition_path)
if hasattr(pipeline, "regional_prompts"):
pipeline.regional_prompts = regional_prompts
if hasattr(pipeline, "region_definitions"):
pipeline.region_definitions = region_definitions
# Generate videos in batch
batch_outputs = pipeline.generate(
prompt=batch_prompt_texts,
video_path=batch_video_paths,
negative_prompt=cfg.negative_prompt,
control_inputs=batch_control_inputs,
save_folder=video_save_subfolder,
batch_size=actual_batch_size,
)
if batch_outputs is None:
log.critical("Guardrail blocked generation for entire batch.")
continue
videos, final_prompts = batch_outputs
for i, (video, prompt) in enumerate(zip(videos, final_prompts)):
if cfg.batch_input_path:
video_save_subfolder = os.path.join(cfg.video_save_folder, f"video_{batch_start+i}")
video_save_path = os.path.join(video_save_subfolder, "output.mp4")
prompt_save_path = os.path.join(video_save_subfolder, "prompt.txt")
else:
video_save_path = os.path.join(cfg.video_save_folder, f"{cfg.video_save_name}.mp4")
prompt_save_path = os.path.join(cfg.video_save_folder, f"{cfg.video_save_name}.txt")
# Save video and prompt
if device_rank == 0:
os.makedirs(os.path.dirname(video_save_path), exist_ok=True)
save_video(
video=video,
fps=cfg.fps,
H=video.shape[1],
W=video.shape[2],
video_save_quality=5,
video_save_path=video_save_path,
)
# Save prompt to text file alongside video
with open(prompt_save_path, "wb") as f:
f.write(prompt.encode("utf-8"))
log.info(f"Saved video to {video_save_path}")
log.info(f"Saved prompt to {prompt_save_path}")
# clean up properly
if cfg.num_gpus > 1:
parallel_state.destroy_model_parallel()
import torch.distributed as dist
dist.destroy_process_group()
if __name__ == "__main__":
args, control_inputs = parse_arguments()
demo(args, control_inputs)
|