File size: 19,640 Bytes
226c7c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import copy
import json
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false" # Workaround to suppress MP warning
import sys
from io import BytesIO
import torch
from cosmos_transfer1.checkpoints import (
BASE_t2w_7B_SV2MV_CHECKPOINT_AV_SAMPLE_PATH,
BASE_v2w_7B_SV2MV_CHECKPOINT_AV_SAMPLE_PATH,
)
from cosmos_transfer1.diffusion.inference.inference_utils import (
default_model_names,
load_controlnet_specs,
valid_hint_keys,
)
from cosmos_transfer1.diffusion.inference.preprocessors import Preprocessors
from cosmos_transfer1.diffusion.inference.world_generation_pipeline import (
DiffusionControl2WorldMultiviewGenerationPipeline,
)
from cosmos_transfer1.utils import log, misc
from cosmos_transfer1.utils.io import save_video
torch.enable_grad(False)
from cosmos_transfer1.checkpoints import (
BASE_7B_CHECKPOINT_AV_SAMPLE_PATH,
BASE_7B_CHECKPOINT_PATH,
DEPTH2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
EDGE2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
HDMAP2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
KEYPOINT2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
LIDAR2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
SEG2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
UPSCALER_CONTROLNET_7B_CHECKPOINT_PATH,
VIS2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
BASE_t2w_7B_SV2MV_CHECKPOINT_AV_SAMPLE_PATH,
BASE_v2w_7B_SV2MV_CHECKPOINT_AV_SAMPLE_PATH,
SV2MV_t2w_HDMAP2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
SV2MV_t2w_HDMAP2WORLD_CONTROLNET_7B_WAYMO_CHECKPOINT_PATH,
SV2MV_t2w_LIDAR2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
SV2MV_v2w_HDMAP2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
SV2MV_v2w_HDMAP2WORLD_CONTROLNET_7B_WAYMO_CHECKPOINT_PATH,
SV2MV_v2w_LIDAR2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
)
from cosmos_transfer1.diffusion.model.model_ctrl import VideoDiffusionModelWithCtrl, VideoDiffusionT2VModelWithCtrl
from cosmos_transfer1.diffusion.model.model_multi_camera_ctrl import MultiVideoDiffusionModelWithCtrl
MODEL_CLASS_DICT = {
BASE_7B_CHECKPOINT_PATH: VideoDiffusionModelWithCtrl,
EDGE2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: VideoDiffusionModelWithCtrl,
VIS2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: VideoDiffusionModelWithCtrl,
DEPTH2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: VideoDiffusionModelWithCtrl,
SEG2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: VideoDiffusionModelWithCtrl,
KEYPOINT2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: VideoDiffusionModelWithCtrl,
UPSCALER_CONTROLNET_7B_CHECKPOINT_PATH: VideoDiffusionModelWithCtrl,
BASE_7B_CHECKPOINT_AV_SAMPLE_PATH: VideoDiffusionT2VModelWithCtrl,
HDMAP2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: VideoDiffusionT2VModelWithCtrl,
LIDAR2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: VideoDiffusionT2VModelWithCtrl,
BASE_t2w_7B_SV2MV_CHECKPOINT_AV_SAMPLE_PATH: MultiVideoDiffusionModelWithCtrl,
SV2MV_t2w_HDMAP2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: MultiVideoDiffusionModelWithCtrl,
SV2MV_t2w_LIDAR2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: MultiVideoDiffusionModelWithCtrl,
BASE_v2w_7B_SV2MV_CHECKPOINT_AV_SAMPLE_PATH: MultiVideoDiffusionModelWithCtrl,
SV2MV_v2w_HDMAP2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: MultiVideoDiffusionModelWithCtrl,
SV2MV_v2w_LIDAR2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: MultiVideoDiffusionModelWithCtrl,
SV2MV_t2w_HDMAP2WORLD_CONTROLNET_7B_WAYMO_CHECKPOINT_PATH: MultiVideoDiffusionModelWithCtrl,
SV2MV_v2w_HDMAP2WORLD_CONTROLNET_7B_WAYMO_CHECKPOINT_PATH: MultiVideoDiffusionModelWithCtrl,
}
MODEL_NAME_DICT = {
BASE_7B_CHECKPOINT_PATH: "CTRL_7Bv1pt3_lvg_tp_121frames_control_input_edge_block3",
EDGE2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: "CTRL_7Bv1pt3_lvg_tp_121frames_control_input_edge_block3",
VIS2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: "CTRL_7Bv1pt3_lvg_tp_121frames_control_input_vis_block3",
DEPTH2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: "CTRL_7Bv1pt3_lvg_tp_121frames_control_input_depth_block3",
KEYPOINT2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: "CTRL_7Bv1pt3_lvg_tp_121frames_control_input_keypoint_block3",
SEG2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: "CTRL_7Bv1pt3_lvg_tp_121frames_control_input_seg_block3",
UPSCALER_CONTROLNET_7B_CHECKPOINT_PATH: "CTRL_7Bv1pt3_lvg_tp_121frames_control_input_upscale_block3",
BASE_7B_CHECKPOINT_AV_SAMPLE_PATH: "CTRL_7Bv1pt3_t2v_121frames_control_input_hdmap_block3",
HDMAP2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: "CTRL_7Bv1pt3_t2v_121frames_control_input_hdmap_block3",
LIDAR2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: "CTRL_7Bv1pt3_t2v_121frames_control_input_lidar_block3",
BASE_t2w_7B_SV2MV_CHECKPOINT_AV_SAMPLE_PATH: "CTRL_7Bv1pt3_sv2mv_t2w_57frames_control_input_hdmap_block3",
BASE_v2w_7B_SV2MV_CHECKPOINT_AV_SAMPLE_PATH: "CTRL_7Bv1pt3_sv2mv_v2w_57frames_control_input_hdmap_block3",
SV2MV_t2w_HDMAP2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: "CTRL_7Bv1pt3_sv2mv_t2w_57frames_control_input_hdmap_block3",
SV2MV_t2w_LIDAR2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: "CTRL_7Bv1pt3_sv2mv_t2w_57frames_control_input_lidar_block3",
SV2MV_t2w_HDMAP2WORLD_CONTROLNET_7B_WAYMO_CHECKPOINT_PATH: "CTRL_7Bv1pt3_sv2mv_t2w_57frames_control_input_hdmap_waymo_block3",
SV2MV_v2w_HDMAP2WORLD_CONTROLNET_7B_WAYMO_CHECKPOINT_PATH: "CTRL_7Bv1pt3_sv2mv_v2w_57frames_control_input_hdmap_waymo_block3",
}
def parse_arguments() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Control to world generation demo script", conflict_handler="resolve")
parser.add_argument(
"--prompt",
type=str,
default="The video captures a stunning, photorealistic scene with remarkable attention to detail, giving it a lifelike appearance that is almost indistinguishable from reality. It appears to be from a high-budget 4K movie, showcasing ultra-high-definition quality with impeccable resolution.",
help="prompt which the sampled video condition on",
)
parser.add_argument(
"--prompt_left",
type=str,
default="The video is captured from a camera mounted on a car. The camera is facing to the left. ",
help="Text prompt for generating left camera view video",
)
parser.add_argument(
"--prompt_right",
type=str,
default="The video is captured from a camera mounted on a car. The camera is facing to the right.",
help="Text prompt for generating right camera view video",
)
parser.add_argument(
"--prompt_back",
type=str,
default="The video is captured from a camera mounted on a car. The camera is facing backwards.",
help="Text prompt for generating rear camera view video",
)
parser.add_argument(
"--prompt_back_left",
type=str,
default="The video is captured from a camera mounted on a car. The camera is facing the rear left side.",
help="Text prompt for generating left camera view video",
)
parser.add_argument(
"--prompt_back_right",
type=str,
default="The video is captured from a camera mounted on a car. The camera is facing the rear right side.",
help="Text prompt for generating right camera view video",
)
parser.add_argument(
"--view_condition_video",
type=str,
default="",
help="We require that only a single condition view is specified and this video is treated as conditioning for that view. "
"This video/videos should have the same duration as control videos",
)
parser.add_argument(
"--initial_condition_video",
type=str,
default="",
help="Can be either a path to a mp4 or a directory. If it is a mp4, we assume"
"that it is a video temporally concatenated with the same number of views as the model. "
"If it is a directory, we assume that the file names evaluate to integers that correspond to a view index,"
" e.g. '000.mp4', '003.mp4', '004.mp4'."
"This video/videos should have at least num_input_frames number of frames for each view. Frames will be taken from the back"
"of the video(s) if the duration of the video in each view exceed num_input_frames",
)
parser.add_argument(
"--num_input_frames",
type=int,
default=1,
help="Number of conditional frames for long video generation, not used in t2w",
choices=[1, 9],
)
parser.add_argument(
"--controlnet_specs",
type=str,
help="Path to JSON file specifying multicontrolnet configurations",
required=True,
)
parser.add_argument(
"--checkpoint_dir", type=str, default="checkpoints", help="Base directory containing model checkpoints"
)
parser.add_argument(
"--tokenizer_dir",
type=str,
default="Cosmos-Tokenize1-CV8x8x8-720p",
help="Tokenizer weights directory relative to checkpoint_dir",
)
parser.add_argument(
"--video_save_name",
type=str,
default="output",
help="Output filename for generating a single video",
)
parser.add_argument(
"--video_save_folder",
type=str,
default="outputs/",
help="Output folder for generating a batch of videos",
)
parser.add_argument("--num_steps", type=int, default=35, help="Number of diffusion sampling steps")
parser.add_argument("--guidance", type=float, default=5, help="Classifier-free guidance scale value")
parser.add_argument("--fps", type=int, default=24, help="FPS of the output video")
parser.add_argument("--seed", type=int, default=1, help="Random seed")
parser.add_argument("--n_clip_max", type=int, default=-1, help="Maximum number of video extension loop")
parser.add_argument("--num_gpus", type=int, default=1, help="Number of GPUs used to run inference in parallel.")
parser.add_argument(
"--offload_diffusion_transformer",
action="store_true",
help="Offload DiT after inference",
)
parser.add_argument(
"--offload_text_encoder_model",
action="store_true",
help="Offload text encoder model after inference",
)
parser.add_argument(
"--offload_guardrail_models",
action="store_true",
help="Offload guardrail models after inference",
)
parser.add_argument(
"--upsample_prompt",
action="store_true",
help="Upsample prompt using Pixtral upsampler model",
)
parser.add_argument(
"--offload_prompt_upsampler",
action="store_true",
help="Offload prompt upsampler model after inference",
)
parser.add_argument(
"--waymo_example",
type=bool,
default=False,
help="Set to true when using post-trained checkpoint from the Waymo post-training example",
)
cmd_args = parser.parse_args()
# Load and parse JSON input
control_inputs, json_args = load_controlnet_specs(cmd_args)
control_inputs.update(json_args)
log.info(f"control_inputs: {json.dumps(control_inputs, indent=4)}")
log.info(f"args in json: {json.dumps(json_args, indent=4)}")
# if parameters not set on command line, use the ones from the controlnet_specs
# if both not set use command line defaults
for key in json_args:
if f"--{key}" not in sys.argv:
setattr(cmd_args, key, json_args[key])
log.info(f"final args: {json.dumps(vars(cmd_args), indent=4)}")
return cmd_args, control_inputs
def validate_controlnet_specs(cfg, controlnet_specs):
"""
Load and validate controlnet specifications from a JSON file.
Args:
json_path (str): Path to the JSON file containing controlnet specs.
checkpoint_dir (str): Base directory for checkpoint files.
Returns:
Dict[str, Any]: Validated and processed controlnet specifications.
"""
checkpoint_dir = cfg.checkpoint_dir
for hint_key, config in controlnet_specs.items():
if hint_key not in list(valid_hint_keys) + ["prompts", "view_condition_video"]:
raise ValueError(f"Invalid hint_key: {hint_key}. Must be one of {valid_hint_keys}")
if hint_key in valid_hint_keys:
if "ckpt_path" not in config:
log.info(f"No checkpoint path specified for {hint_key}. Using default.")
config["ckpt_path"] = os.path.join(checkpoint_dir, default_model_names[hint_key])
# Regardless whether "control_weight_prompt" is provided (i.e. whether we automatically
# generate spatiotemporal control weight binary masks), control_weight is needed to.
if "control_weight" not in config:
log.warning(f"No control weight specified for {hint_key}. Setting to 0.5.")
config["control_weight"] = "0.5"
else:
# Check if control weight is a path or a scalar
weight = config["control_weight"]
if not isinstance(weight, str) or not weight.endswith(".pt"):
try:
# Try converting to float
scalar_value = float(weight)
if scalar_value < 0:
raise ValueError(f"Control weight for {hint_key} must be non-negative.")
except ValueError:
raise ValueError(
f"Control weight for {hint_key} must be a valid non-negative float or a path to a .pt file."
)
return controlnet_specs
def demo(cfg, control_inputs):
"""Run control-to-world generation demo.
This function handles the main control-to-world generation pipeline, including:
- Setting up the random seed for reproducibility
- Initializing the generation pipeline with the provided configuration
- Processing single or multiple prompts/images/videos from input
- Generating videos from prompts and images/videos
- Saving the generated videos and corresponding prompts to disk
Args:
cfg (argparse.Namespace): Configuration namespace containing:
- Model configuration (checkpoint paths, model settings)
- Generation parameters (guidance, steps, dimensions)
- Input/output settings (prompts/images/videos, save paths)
- Performance options (model offloading settings)
The function will save:
- Generated MP4 video files
- Text files containing the processed prompts
If guardrails block the generation, a critical log message is displayed
and the function continues to the next prompt if available.
"""
control_inputs = validate_controlnet_specs(cfg, control_inputs)
misc.set_random_seed(cfg.seed)
device_rank = 0
process_group = None
if cfg.num_gpus > 1:
from megatron.core import parallel_state
from cosmos_transfer1.utils import distributed
distributed.init()
parallel_state.initialize_model_parallel(context_parallel_size=cfg.num_gpus)
process_group = parallel_state.get_context_parallel_group()
device_rank = distributed.get_rank(process_group)
preprocessors = Preprocessors()
if cfg.waymo_example:
prompts = [
cfg.prompt,
cfg.prompt_left,
cfg.prompt_right,
cfg.prompt_back_left,
cfg.prompt_back_right,
]
if cfg.initial_condition_video:
cfg.is_lvg_model = True
checkpoint = SV2MV_v2w_HDMAP2WORLD_CONTROLNET_7B_WAYMO_CHECKPOINT_PATH
else:
cfg.is_lvg_model = False
cfg.num_input_frames = 0
checkpoint = SV2MV_t2w_HDMAP2WORLD_CONTROLNET_7B_WAYMO_CHECKPOINT_PATH
else:
prompts = [
cfg.prompt,
cfg.prompt_left,
cfg.prompt_right,
cfg.prompt_back,
cfg.prompt_back_left,
cfg.prompt_back_right,
]
if cfg.initial_condition_video:
cfg.is_lvg_model = True
checkpoint = BASE_v2w_7B_SV2MV_CHECKPOINT_AV_SAMPLE_PATH
else:
cfg.is_lvg_model = False
cfg.num_input_frames = 0
checkpoint = BASE_t2w_7B_SV2MV_CHECKPOINT_AV_SAMPLE_PATH
# Initialize transfer generation model pipeline
pipeline = DiffusionControl2WorldMultiviewGenerationPipeline(
checkpoint_dir=cfg.checkpoint_dir,
checkpoint_name=checkpoint,
offload_network=cfg.offload_diffusion_transformer,
offload_text_encoder_model=cfg.offload_text_encoder_model,
offload_guardrail_models=cfg.offload_guardrail_models,
guidance=cfg.guidance,
num_steps=cfg.num_steps,
fps=cfg.fps,
seed=cfg.seed,
num_input_frames=cfg.num_input_frames,
control_inputs=control_inputs,
sigma_max=80.0,
num_video_frames=57,
process_group=process_group,
height=576,
width=1024,
is_lvg_model=cfg.is_lvg_model,
n_clip_max=cfg.n_clip_max,
waymo_example=cfg.waymo_example,
)
os.makedirs(cfg.video_save_folder, exist_ok=True)
current_prompt = prompts
current_video_path = ""
video_save_subfolder = os.path.join(cfg.video_save_folder, "video_0")
os.makedirs(video_save_subfolder, exist_ok=True)
current_control_inputs = copy.deepcopy(control_inputs)
# if control inputs are not provided, run respective preprocessor (for seg and depth)
preprocessors(current_video_path, current_prompt, current_control_inputs, video_save_subfolder)
# Generate video
generated_output = pipeline.generate(
prompts=current_prompt,
view_condition_video=cfg.view_condition_video,
initial_condition_video=cfg.initial_condition_video,
control_inputs=current_control_inputs,
save_folder=video_save_subfolder,
)
if generated_output is None:
log.critical("Guardrail blocked generation.")
video, prompt = generated_output
video_save_path = os.path.join(cfg.video_save_folder, f"{cfg.video_save_name}.mp4")
prompt_save_path = os.path.join(cfg.video_save_folder, f"{cfg.video_save_name}.txt")
if device_rank == 0:
# Save video
os.makedirs(os.path.dirname(video_save_path), exist_ok=True)
save_video(
video=video,
fps=cfg.fps,
H=video.shape[1],
W=video.shape[2],
video_save_quality=7,
video_save_path=video_save_path,
)
# Save prompt to text file alongside video
with open(prompt_save_path, "wb") as f:
f.write(";".join(prompt).encode("utf-8"))
log.info(f"Saved video to {video_save_path}")
log.info(f"Saved prompt to {prompt_save_path}")
# clean up properly
if cfg.num_gpus > 1:
parallel_state.destroy_model_parallel()
import torch.distributed as dist
dist.destroy_process_group()
if __name__ == "__main__":
args, control_inputs = parse_arguments()
demo(args, control_inputs)
|