File size: 19,640 Bytes
226c7c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import copy
import json
import os

os.environ["TOKENIZERS_PARALLELISM"] = "false"  # Workaround to suppress MP warning

import sys
from io import BytesIO

import torch

from cosmos_transfer1.checkpoints import (
    BASE_t2w_7B_SV2MV_CHECKPOINT_AV_SAMPLE_PATH,
    BASE_v2w_7B_SV2MV_CHECKPOINT_AV_SAMPLE_PATH,
)
from cosmos_transfer1.diffusion.inference.inference_utils import (
    default_model_names,
    load_controlnet_specs,
    valid_hint_keys,
)
from cosmos_transfer1.diffusion.inference.preprocessors import Preprocessors
from cosmos_transfer1.diffusion.inference.world_generation_pipeline import (
    DiffusionControl2WorldMultiviewGenerationPipeline,
)
from cosmos_transfer1.utils import log, misc
from cosmos_transfer1.utils.io import save_video

torch.enable_grad(False)

from cosmos_transfer1.checkpoints import (
    BASE_7B_CHECKPOINT_AV_SAMPLE_PATH,
    BASE_7B_CHECKPOINT_PATH,
    DEPTH2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
    EDGE2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
    HDMAP2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
    KEYPOINT2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
    LIDAR2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
    SEG2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
    UPSCALER_CONTROLNET_7B_CHECKPOINT_PATH,
    VIS2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
    BASE_t2w_7B_SV2MV_CHECKPOINT_AV_SAMPLE_PATH,
    BASE_v2w_7B_SV2MV_CHECKPOINT_AV_SAMPLE_PATH,
    SV2MV_t2w_HDMAP2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
    SV2MV_t2w_HDMAP2WORLD_CONTROLNET_7B_WAYMO_CHECKPOINT_PATH,
    SV2MV_t2w_LIDAR2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
    SV2MV_v2w_HDMAP2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
    SV2MV_v2w_HDMAP2WORLD_CONTROLNET_7B_WAYMO_CHECKPOINT_PATH,
    SV2MV_v2w_LIDAR2WORLD_CONTROLNET_7B_CHECKPOINT_PATH,
)
from cosmos_transfer1.diffusion.model.model_ctrl import VideoDiffusionModelWithCtrl, VideoDiffusionT2VModelWithCtrl
from cosmos_transfer1.diffusion.model.model_multi_camera_ctrl import MultiVideoDiffusionModelWithCtrl

MODEL_CLASS_DICT = {
    BASE_7B_CHECKPOINT_PATH: VideoDiffusionModelWithCtrl,
    EDGE2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: VideoDiffusionModelWithCtrl,
    VIS2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: VideoDiffusionModelWithCtrl,
    DEPTH2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: VideoDiffusionModelWithCtrl,
    SEG2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: VideoDiffusionModelWithCtrl,
    KEYPOINT2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: VideoDiffusionModelWithCtrl,
    UPSCALER_CONTROLNET_7B_CHECKPOINT_PATH: VideoDiffusionModelWithCtrl,
    BASE_7B_CHECKPOINT_AV_SAMPLE_PATH: VideoDiffusionT2VModelWithCtrl,
    HDMAP2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: VideoDiffusionT2VModelWithCtrl,
    LIDAR2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: VideoDiffusionT2VModelWithCtrl,
    BASE_t2w_7B_SV2MV_CHECKPOINT_AV_SAMPLE_PATH: MultiVideoDiffusionModelWithCtrl,
    SV2MV_t2w_HDMAP2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: MultiVideoDiffusionModelWithCtrl,
    SV2MV_t2w_LIDAR2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: MultiVideoDiffusionModelWithCtrl,
    BASE_v2w_7B_SV2MV_CHECKPOINT_AV_SAMPLE_PATH: MultiVideoDiffusionModelWithCtrl,
    SV2MV_v2w_HDMAP2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: MultiVideoDiffusionModelWithCtrl,
    SV2MV_v2w_LIDAR2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: MultiVideoDiffusionModelWithCtrl,
    SV2MV_t2w_HDMAP2WORLD_CONTROLNET_7B_WAYMO_CHECKPOINT_PATH: MultiVideoDiffusionModelWithCtrl,
    SV2MV_v2w_HDMAP2WORLD_CONTROLNET_7B_WAYMO_CHECKPOINT_PATH: MultiVideoDiffusionModelWithCtrl,
}

MODEL_NAME_DICT = {
    BASE_7B_CHECKPOINT_PATH: "CTRL_7Bv1pt3_lvg_tp_121frames_control_input_edge_block3",
    EDGE2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: "CTRL_7Bv1pt3_lvg_tp_121frames_control_input_edge_block3",
    VIS2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: "CTRL_7Bv1pt3_lvg_tp_121frames_control_input_vis_block3",
    DEPTH2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: "CTRL_7Bv1pt3_lvg_tp_121frames_control_input_depth_block3",
    KEYPOINT2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: "CTRL_7Bv1pt3_lvg_tp_121frames_control_input_keypoint_block3",
    SEG2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: "CTRL_7Bv1pt3_lvg_tp_121frames_control_input_seg_block3",
    UPSCALER_CONTROLNET_7B_CHECKPOINT_PATH: "CTRL_7Bv1pt3_lvg_tp_121frames_control_input_upscale_block3",
    BASE_7B_CHECKPOINT_AV_SAMPLE_PATH: "CTRL_7Bv1pt3_t2v_121frames_control_input_hdmap_block3",
    HDMAP2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: "CTRL_7Bv1pt3_t2v_121frames_control_input_hdmap_block3",
    LIDAR2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: "CTRL_7Bv1pt3_t2v_121frames_control_input_lidar_block3",
    BASE_t2w_7B_SV2MV_CHECKPOINT_AV_SAMPLE_PATH: "CTRL_7Bv1pt3_sv2mv_t2w_57frames_control_input_hdmap_block3",
    BASE_v2w_7B_SV2MV_CHECKPOINT_AV_SAMPLE_PATH: "CTRL_7Bv1pt3_sv2mv_v2w_57frames_control_input_hdmap_block3",
    SV2MV_t2w_HDMAP2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: "CTRL_7Bv1pt3_sv2mv_t2w_57frames_control_input_hdmap_block3",
    SV2MV_t2w_LIDAR2WORLD_CONTROLNET_7B_CHECKPOINT_PATH: "CTRL_7Bv1pt3_sv2mv_t2w_57frames_control_input_lidar_block3",
    SV2MV_t2w_HDMAP2WORLD_CONTROLNET_7B_WAYMO_CHECKPOINT_PATH: "CTRL_7Bv1pt3_sv2mv_t2w_57frames_control_input_hdmap_waymo_block3",
    SV2MV_v2w_HDMAP2WORLD_CONTROLNET_7B_WAYMO_CHECKPOINT_PATH: "CTRL_7Bv1pt3_sv2mv_v2w_57frames_control_input_hdmap_waymo_block3",
}


def parse_arguments() -> argparse.Namespace:
    parser = argparse.ArgumentParser(description="Control to world generation demo script", conflict_handler="resolve")
    parser.add_argument(
        "--prompt",
        type=str,
        default="The video captures a stunning, photorealistic scene with remarkable attention to detail, giving it a lifelike appearance that is almost indistinguishable from reality. It appears to be from a high-budget 4K movie, showcasing ultra-high-definition quality with impeccable resolution.",
        help="prompt which the sampled video condition on",
    )
    parser.add_argument(
        "--prompt_left",
        type=str,
        default="The video is captured from a camera mounted on a car. The camera is facing to the left. ",
        help="Text prompt for generating left camera view video",
    )
    parser.add_argument(
        "--prompt_right",
        type=str,
        default="The video is captured from a camera mounted on a car. The camera is facing to the right.",
        help="Text prompt for generating right camera view video",
    )

    parser.add_argument(
        "--prompt_back",
        type=str,
        default="The video is captured from a camera mounted on a car. The camera is facing backwards.",
        help="Text prompt for generating rear camera view video",
    )
    parser.add_argument(
        "--prompt_back_left",
        type=str,
        default="The video is captured from a camera mounted on a car. The camera is facing the rear left side.",
        help="Text prompt for generating left camera view video",
    )
    parser.add_argument(
        "--prompt_back_right",
        type=str,
        default="The video is captured from a camera mounted on a car. The camera is facing the rear right side.",
        help="Text prompt for generating right camera view video",
    )
    parser.add_argument(
        "--view_condition_video",
        type=str,
        default="",
        help="We require that only a single condition view is specified and this video is treated as conditioning for that view. "
        "This video/videos should have the same duration as control videos",
    )
    parser.add_argument(
        "--initial_condition_video",
        type=str,
        default="",
        help="Can be either a path to a mp4 or a directory. If it is a mp4, we assume"
        "that it is a video temporally concatenated with the same number of views as the model. "
        "If it is a directory, we assume that the file names evaluate to integers that correspond to a view index,"
        " e.g. '000.mp4', '003.mp4', '004.mp4'."
        "This video/videos should have at least num_input_frames number of frames for each view. Frames will be taken from the back"
        "of the video(s) if the duration of the video in each view exceed num_input_frames",
    )
    parser.add_argument(
        "--num_input_frames",
        type=int,
        default=1,
        help="Number of conditional frames for long video generation, not used in t2w",
        choices=[1, 9],
    )
    parser.add_argument(
        "--controlnet_specs",
        type=str,
        help="Path to JSON file specifying multicontrolnet configurations",
        required=True,
    )
    parser.add_argument(
        "--checkpoint_dir", type=str, default="checkpoints", help="Base directory containing model checkpoints"
    )
    parser.add_argument(
        "--tokenizer_dir",
        type=str,
        default="Cosmos-Tokenize1-CV8x8x8-720p",
        help="Tokenizer weights directory relative to checkpoint_dir",
    )
    parser.add_argument(
        "--video_save_name",
        type=str,
        default="output",
        help="Output filename for generating a single video",
    )
    parser.add_argument(
        "--video_save_folder",
        type=str,
        default="outputs/",
        help="Output folder for generating a batch of videos",
    )
    parser.add_argument("--num_steps", type=int, default=35, help="Number of diffusion sampling steps")
    parser.add_argument("--guidance", type=float, default=5, help="Classifier-free guidance scale value")
    parser.add_argument("--fps", type=int, default=24, help="FPS of the output video")
    parser.add_argument("--seed", type=int, default=1, help="Random seed")
    parser.add_argument("--n_clip_max", type=int, default=-1, help="Maximum number of video extension loop")
    parser.add_argument("--num_gpus", type=int, default=1, help="Number of GPUs used to run inference in parallel.")
    parser.add_argument(
        "--offload_diffusion_transformer",
        action="store_true",
        help="Offload DiT after inference",
    )
    parser.add_argument(
        "--offload_text_encoder_model",
        action="store_true",
        help="Offload text encoder model after inference",
    )
    parser.add_argument(
        "--offload_guardrail_models",
        action="store_true",
        help="Offload guardrail models after inference",
    )
    parser.add_argument(
        "--upsample_prompt",
        action="store_true",
        help="Upsample prompt using Pixtral upsampler model",
    )
    parser.add_argument(
        "--offload_prompt_upsampler",
        action="store_true",
        help="Offload prompt upsampler model after inference",
    )
    parser.add_argument(
        "--waymo_example",
        type=bool,
        default=False,
        help="Set to true when using post-trained checkpoint from the Waymo post-training example",
    )

    cmd_args = parser.parse_args()

    # Load and parse JSON input
    control_inputs, json_args = load_controlnet_specs(cmd_args)
    control_inputs.update(json_args)
    log.info(f"control_inputs: {json.dumps(control_inputs, indent=4)}")
    log.info(f"args in json: {json.dumps(json_args, indent=4)}")

    # if parameters not set on command line, use the ones from the controlnet_specs
    # if both not set use command line defaults
    for key in json_args:
        if f"--{key}" not in sys.argv:
            setattr(cmd_args, key, json_args[key])

    log.info(f"final args: {json.dumps(vars(cmd_args), indent=4)}")

    return cmd_args, control_inputs


def validate_controlnet_specs(cfg, controlnet_specs):
    """
    Load and validate controlnet specifications from a JSON file.

    Args:
        json_path (str): Path to the JSON file containing controlnet specs.
        checkpoint_dir (str): Base directory for checkpoint files.

    Returns:
        Dict[str, Any]: Validated and processed controlnet specifications.
    """
    checkpoint_dir = cfg.checkpoint_dir

    for hint_key, config in controlnet_specs.items():
        if hint_key not in list(valid_hint_keys) + ["prompts", "view_condition_video"]:
            raise ValueError(f"Invalid hint_key: {hint_key}. Must be one of {valid_hint_keys}")
        if hint_key in valid_hint_keys:
            if "ckpt_path" not in config:
                log.info(f"No checkpoint path specified for {hint_key}. Using default.")
                config["ckpt_path"] = os.path.join(checkpoint_dir, default_model_names[hint_key])

            # Regardless whether "control_weight_prompt" is provided (i.e. whether we automatically
            # generate spatiotemporal control weight binary masks), control_weight is needed to.
            if "control_weight" not in config:
                log.warning(f"No control weight specified for {hint_key}. Setting to 0.5.")
                config["control_weight"] = "0.5"
            else:
                # Check if control weight is a path or a scalar
                weight = config["control_weight"]
                if not isinstance(weight, str) or not weight.endswith(".pt"):
                    try:
                        # Try converting to float
                        scalar_value = float(weight)
                        if scalar_value < 0:
                            raise ValueError(f"Control weight for {hint_key} must be non-negative.")
                    except ValueError:
                        raise ValueError(
                            f"Control weight for {hint_key} must be a valid non-negative float or a path to a .pt file."
                        )

    return controlnet_specs


def demo(cfg, control_inputs):
    """Run control-to-world generation demo.

    This function handles the main control-to-world generation pipeline, including:
    - Setting up the random seed for reproducibility
    - Initializing the generation pipeline with the provided configuration
    - Processing single or multiple prompts/images/videos from input
    - Generating videos from prompts and images/videos
    - Saving the generated videos and corresponding prompts to disk

    Args:
        cfg (argparse.Namespace): Configuration namespace containing:
            - Model configuration (checkpoint paths, model settings)
            - Generation parameters (guidance, steps, dimensions)
            - Input/output settings (prompts/images/videos, save paths)
            - Performance options (model offloading settings)

    The function will save:
        - Generated MP4 video files
        - Text files containing the processed prompts

    If guardrails block the generation, a critical log message is displayed
    and the function continues to the next prompt if available.
    """

    control_inputs = validate_controlnet_specs(cfg, control_inputs)
    misc.set_random_seed(cfg.seed)

    device_rank = 0
    process_group = None
    if cfg.num_gpus > 1:
        from megatron.core import parallel_state

        from cosmos_transfer1.utils import distributed

        distributed.init()
        parallel_state.initialize_model_parallel(context_parallel_size=cfg.num_gpus)
        process_group = parallel_state.get_context_parallel_group()

        device_rank = distributed.get_rank(process_group)

    preprocessors = Preprocessors()

    if cfg.waymo_example:
        prompts = [
            cfg.prompt,
            cfg.prompt_left,
            cfg.prompt_right,
            cfg.prompt_back_left,
            cfg.prompt_back_right,
        ]
        if cfg.initial_condition_video:
            cfg.is_lvg_model = True
            checkpoint = SV2MV_v2w_HDMAP2WORLD_CONTROLNET_7B_WAYMO_CHECKPOINT_PATH
        else:
            cfg.is_lvg_model = False
            cfg.num_input_frames = 0
            checkpoint = SV2MV_t2w_HDMAP2WORLD_CONTROLNET_7B_WAYMO_CHECKPOINT_PATH

    else:
        prompts = [
            cfg.prompt,
            cfg.prompt_left,
            cfg.prompt_right,
            cfg.prompt_back,
            cfg.prompt_back_left,
            cfg.prompt_back_right,
        ]

        if cfg.initial_condition_video:
            cfg.is_lvg_model = True
            checkpoint = BASE_v2w_7B_SV2MV_CHECKPOINT_AV_SAMPLE_PATH
        else:
            cfg.is_lvg_model = False
            cfg.num_input_frames = 0
            checkpoint = BASE_t2w_7B_SV2MV_CHECKPOINT_AV_SAMPLE_PATH

    # Initialize transfer generation model pipeline
    pipeline = DiffusionControl2WorldMultiviewGenerationPipeline(
        checkpoint_dir=cfg.checkpoint_dir,
        checkpoint_name=checkpoint,
        offload_network=cfg.offload_diffusion_transformer,
        offload_text_encoder_model=cfg.offload_text_encoder_model,
        offload_guardrail_models=cfg.offload_guardrail_models,
        guidance=cfg.guidance,
        num_steps=cfg.num_steps,
        fps=cfg.fps,
        seed=cfg.seed,
        num_input_frames=cfg.num_input_frames,
        control_inputs=control_inputs,
        sigma_max=80.0,
        num_video_frames=57,
        process_group=process_group,
        height=576,
        width=1024,
        is_lvg_model=cfg.is_lvg_model,
        n_clip_max=cfg.n_clip_max,
        waymo_example=cfg.waymo_example,
    )

    os.makedirs(cfg.video_save_folder, exist_ok=True)

    current_prompt = prompts
    current_video_path = ""
    video_save_subfolder = os.path.join(cfg.video_save_folder, "video_0")
    os.makedirs(video_save_subfolder, exist_ok=True)
    current_control_inputs = copy.deepcopy(control_inputs)

    # if control inputs are not provided, run respective preprocessor (for seg and depth)
    preprocessors(current_video_path, current_prompt, current_control_inputs, video_save_subfolder)

    # Generate video
    generated_output = pipeline.generate(
        prompts=current_prompt,
        view_condition_video=cfg.view_condition_video,
        initial_condition_video=cfg.initial_condition_video,
        control_inputs=current_control_inputs,
        save_folder=video_save_subfolder,
    )
    if generated_output is None:
        log.critical("Guardrail blocked generation.")
    video, prompt = generated_output

    video_save_path = os.path.join(cfg.video_save_folder, f"{cfg.video_save_name}.mp4")
    prompt_save_path = os.path.join(cfg.video_save_folder, f"{cfg.video_save_name}.txt")

    if device_rank == 0:
        # Save video
        os.makedirs(os.path.dirname(video_save_path), exist_ok=True)
        save_video(
            video=video,
            fps=cfg.fps,
            H=video.shape[1],
            W=video.shape[2],
            video_save_quality=7,
            video_save_path=video_save_path,
        )

        # Save prompt to text file alongside video
        with open(prompt_save_path, "wb") as f:
            f.write(";".join(prompt).encode("utf-8"))

        log.info(f"Saved video to {video_save_path}")
        log.info(f"Saved prompt to {prompt_save_path}")

    # clean up properly
    if cfg.num_gpus > 1:
        parallel_state.destroy_model_parallel()
        import torch.distributed as dist

        dist.destroy_process_group()


if __name__ == "__main__":
    args, control_inputs = parse_arguments()
    demo(args, control_inputs)