File size: 47,086 Bytes
226c7c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Any, Callable, Dict, List, Optional, Set, Tuple, TypeVar, Union

import torch
from einops import rearrange
from megatron.core import parallel_state
from torch import Tensor

from cosmos_transfer1.diffusion.conditioner import BaseVideoCondition, VideoConditionerWithCtrl, VideoExtendCondition
from cosmos_transfer1.diffusion.inference.inference_utils import merge_patches_into_video, split_video_into_patches
from cosmos_transfer1.diffusion.model.model_t2w import DiffusionT2WModel, broadcast_condition
from cosmos_transfer1.diffusion.model.model_v2w import DiffusionV2WModel, DistillV2WModel
from cosmos_transfer1.diffusion.module.parallel import broadcast, cat_outputs_cp, split_inputs_cp
from cosmos_transfer1.diffusion.networks.distill_controlnet_wrapper import DistillControlNet
from cosmos_transfer1.utils import log, misc
from cosmos_transfer1.utils.lazy_config import instantiate as lazy_instantiate

T = TypeVar("T")
IS_PREPROCESSED_KEY = "is_preprocessed"


class VideoDiffusionModelWithCtrl(DiffusionV2WModel):
    def build_model(self) -> torch.nn.ModuleDict:
        log.info("Start creating base model")
        base_model = super().build_model()
        # initialize base model
        self.load_base_model(base_model)
        log.info("Done creating base model")

        log.info("Start creating ctrlnet model")
        net = lazy_instantiate(self.config.net_ctrl)
        conditioner = base_model.conditioner
        logvar = base_model.logvar
        # initialize controlnet encoder
        model = torch.nn.ModuleDict({"net": net, "conditioner": conditioner, "logvar": logvar})
        model.load_state_dict(base_model.state_dict(), strict=False)

        model.base_model = base_model
        log.info("Done creating ctrlnet model")

        self.hint_key = self.config.hint_key["hint_key"]
        return model

    @property
    def base_net(self):
        return self.model.base_model.net

    @property
    def conditioner(self):
        return self.model.conditioner

    def load_base_model(self, base_model) -> None:
        config = self.config
        if config.base_load_from is not None:
            checkpoint_path = config.base_load_from["load_path"]
        else:
            checkpoint_path = ""

        if checkpoint_path:
            log.info(f"Loading base model checkpoint (local): {checkpoint_path}")
            state_dict = torch.load(checkpoint_path, map_location=lambda storage, loc: storage, weights_only=False)
            log.success(f"Complete loading base model checkpoint (local): {checkpoint_path}")

            if "ema" in state_dict and state_dict["ema"] is not None:
                # Copy the base model weights from ema model.
                log.info("Copying ema to base model")
                base_state_dict = {k.replace("-", "."): v for k, v in state_dict["ema"].items()}
            elif "model" in state_dict:
                # Copy the base model weights from reg model.
                log.warning("Using non-EMA base model")
                base_state_dict = state_dict["model"]
            else:
                log.info("Loading from an EMA only model")
                base_state_dict = state_dict
            missing, unexpected = base_model.load_state_dict(base_state_dict, strict=False)
            log.info(f"Missing: {missing}")
            log.info(f"Unexpected: {unexpected}")
        log.info("Done loading the base model checkpoint.")

    def get_data_and_condition(
        self, data_batch: dict[str, Tensor], **kwargs
    ) -> Tuple[Tensor, VideoConditionerWithCtrl]:
        # process the control input
        hint_key = self.config.hint_key["hint_key"]
        _data = {hint_key: data_batch[hint_key]}
        if IS_PREPROCESSED_KEY in data_batch:
            _data[IS_PREPROCESSED_KEY] = data_batch[IS_PREPROCESSED_KEY]
        data_batch[hint_key] = _data[hint_key]
        data_batch["hint_key"] = hint_key
        raw_state, latent_state, condition = super().get_data_and_condition(data_batch, **kwargs)
        use_multicontrol = (
            ("control_weight" in data_batch)
            and not isinstance(data_batch["control_weight"], float)
            and data_batch["control_weight"].shape[0] > 1
        )
        if use_multicontrol:  # encode individual conditions separately
            latent_hint = []
            num_conditions = data_batch[data_batch["hint_key"]].size(1) // 3
            for i in range(num_conditions):
                cond_mask = [False] * num_conditions
                cond_mask[i] = True
                latent_hint += [self.encode_latent(data_batch, cond_mask=cond_mask)]
            latent_hint = torch.cat(latent_hint)
        else:
            latent_hint = self.encode_latent(data_batch)

        # add extra conditions
        data_batch["latent_hint"] = latent_hint
        setattr(condition, hint_key, latent_hint)
        setattr(condition, "base_model", self.model.base_model)
        return raw_state, latent_state, condition

    def get_x_from_clean(
        self,
        in_clean_img: torch.Tensor,
        sigma_max: float | None,
        seed: int = 1,
    ) -> Tensor:
        """
        in_clean_img (torch.Tensor): input clean image for image-to-image/video-to-video by adding noise then denoising
        sigma_max (float): maximum sigma applied to in_clean_image for image-to-image/video-to-video
        """
        if in_clean_img is None:
            return None
        generator = torch.Generator(device=self.tensor_kwargs["device"])
        generator.manual_seed(seed)
        noise = torch.randn(*in_clean_img.shape, **self.tensor_kwargs, generator=generator)
        if sigma_max is None:
            sigma_max = self.sde.sigma_max
        x_sigma_max = in_clean_img + noise * sigma_max
        return x_sigma_max

    def encode_latent(self, data_batch: dict, cond_mask: list = []) -> torch.Tensor:
        x = data_batch[data_batch["hint_key"]]
        latent = []
        # control input goes through tokenizer, which always takes 3-input channels
        num_conditions = x.size(1) // 3  # input conditions were concatenated along channel dimension
        if num_conditions > 1 and self.config.hint_dropout_rate > 0:
            if torch.is_grad_enabled():  # during training, randomly dropout some conditions
                cond_mask = torch.rand(num_conditions) > self.config.hint_dropout_rate
                if not cond_mask.any():  # make sure at least one condition is present
                    cond_mask = [True] * num_conditions
            elif not cond_mask:  # during inference, use hint_mask to indicate which conditions are used
                cond_mask = self.config.hint_mask
        else:
            cond_mask = [True] * num_conditions
        for idx in range(0, x.size(1), 3):
            x_rgb = x[:, idx : idx + 3]
            if not cond_mask[idx // 3]:  # if the condition is not selected, replace with a black image
                x_rgb = torch.zeros_like(x_rgb)
            latent.append(self.encode(x_rgb))
        latent = torch.cat(latent, dim=1)
        return latent

    def get_x0_fn_from_batch(
        self,
        data_batch: Dict,
        guidance: float = 1.5,
        is_negative_prompt: bool = False,
        condition_latent: torch.Tensor = None,
        num_condition_t: Union[int, None] = None,
        condition_video_augment_sigma_in_inference: float = None,
        seed: int = 1,
        target_h: int = 88,
        target_w: int = 160,
        patch_h: int = 88,
        patch_w: int = 160,
        use_batch_processing: bool = True,
    ) -> Callable:
        """
        Generates a callable function `x0_fn` based on the provided data batch and guidance factor.

        This function first processes the input data batch through a conditioning workflow (`conditioner`) to obtain conditioned and unconditioned states. It then defines a nested function `x0_fn` which applies a denoising operation on an input `noise_x` at a given noise level `sigma` using both the conditioned and unconditioned states.

        Args:
        - data_batch (Dict): A batch of data used for conditioning. The format and content of this dictionary should align with the expectations of the `self.conditioner`
        - guidance (float, optional): A scalar value that modulates the influence of the conditioned state relative to the unconditioned state in the output. Defaults to 1.5.
        - is_negative_prompt (bool): use negative prompt t5 in uncondition if true
            condition_latent (torch.Tensor): latent tensor in shape B,C,T,H,W as condition to generate video.
        - num_condition_t (int): number of condition latent T, used in inference to decide the condition region and config.conditioner.video_cond_bool.condition_location == "first_n"
        - condition_video_augment_sigma_in_inference (float): sigma for condition video augmentation in inference
        - target_h (int): final stitched latent height
        - target_w (int): final stitched latent width
        - patch_h (int): latent patch height for each network inference
        - patch_w (int): latent patch width for each network inference

        Returns:
        - Callable: A function `x0_fn(noise_x, sigma)` that takes two arguments, `noise_x` and `sigma`, and return x0 predictoin

        The returned function is suitable for use in scenarios where a denoised state is required based on both conditioned and unconditioned inputs, with an adjustable level of guidance influence.
        """
        # data_batch should be the one processed by self.get_data_and_condition
        if is_negative_prompt:
            condition, uncondition = self.conditioner.get_condition_with_negative_prompt(data_batch)
        else:
            condition, uncondition = self.conditioner.get_condition_uncondition(data_batch)
            # Add conditions for long video generation.

        if condition_latent is None:
            condition_latent = torch.zeros(data_batch["latent_hint"].shape, **self.tensor_kwargs)
            num_condition_t = 0
            condition_video_augment_sigma_in_inference = 1000

        if use_batch_processing:
            condition = self.add_condition_video_indicator_and_video_input_mask(
                condition_latent, condition, num_condition_t
            )
            uncondition = self.add_condition_video_indicator_and_video_input_mask(
                condition_latent, uncondition, num_condition_t
            )
        else:
            condition = self.add_condition_video_indicator_and_video_input_mask(
                condition_latent[:1], condition, num_condition_t
            )
            uncondition = self.add_condition_video_indicator_and_video_input_mask(
                condition_latent[:1], uncondition, num_condition_t
            )
        condition.video_cond_bool = True
        uncondition.video_cond_bool = False  # Not do cfg on condition frames

        # Add extra conditions for ctrlnet.
        latent_hint = data_batch["latent_hint"]
        hint_key = data_batch["hint_key"]
        setattr(condition, hint_key, latent_hint)
        if "use_none_hint" in data_batch and data_batch["use_none_hint"]:
            setattr(uncondition, hint_key, None)
        else:
            setattr(uncondition, hint_key, latent_hint)

        # Add extra conditions for ctrlnet.
        # Handle regional prompting information
        if "regional_contexts" in data_batch and "region_masks" in data_batch:
            setattr(condition, "regional_contexts", data_batch["regional_contexts"])
            setattr(condition, "region_masks", data_batch["region_masks"])
            # For unconditioned generation, we still need the region masks but not the regional contexts
            setattr(uncondition, "region_masks", data_batch["region_masks"])
            setattr(uncondition, "regional_contexts", None)

        to_cp = self.net.is_context_parallel_enabled
        # For inference, check if parallel_state is initialized
        if parallel_state.is_initialized():
            condition = broadcast_condition(condition, to_tp=False, to_cp=to_cp)
            uncondition = broadcast_condition(uncondition, to_tp=False, to_cp=to_cp)

            cp_group = parallel_state.get_context_parallel_group()
            latent_hint = getattr(condition, hint_key)
            seq_dim = 3 if latent_hint.ndim == 6 else 2
            latent_hint = split_inputs_cp(latent_hint, seq_dim=seq_dim, cp_group=cp_group)
            setattr(condition, hint_key, latent_hint)
            if getattr(uncondition, hint_key) is not None:
                setattr(uncondition, hint_key, latent_hint)
            if hasattr(condition, "regional_contexts") and getattr(condition, "regional_contexts") is not None:
                regional_contexts = getattr(condition, "regional_contexts")
                regional_contexts = split_inputs_cp(regional_contexts, seq_dim=2, cp_group=cp_group)
                setattr(condition, "regional_contexts", regional_contexts)

            if hasattr(condition, "region_masks") and getattr(condition, "region_masks") is not None:
                region_masks = getattr(condition, "region_masks")
                region_masks = split_inputs_cp(region_masks, seq_dim=2, cp_group=cp_group)
                setattr(condition, "region_masks", region_masks)
                setattr(uncondition, "region_masks", region_masks)

        setattr(condition, "base_model", self.model.base_model)
        setattr(uncondition, "base_model", self.model.base_model)
        if hasattr(self, "hint_encoders"):
            self.model.net.hint_encoders = self.hint_encoders

        def x0_fn(noise_x: torch.Tensor, sigma: torch.Tensor):
            B = noise_x.shape[0]  # Batch dimension
            w, h = target_w, target_h
            n_img_w = (w - 1) // patch_w + 1
            n_img_h = (h - 1) // patch_h + 1

            overlap_size_w = overlap_size_h = 0
            if n_img_w > 1:
                overlap_size_w = (n_img_w * patch_w - w) // (n_img_w - 1)
                assert n_img_w * patch_w - overlap_size_w * (n_img_w - 1) == w
            if n_img_h > 1:
                overlap_size_h = (n_img_h * patch_h - h) // (n_img_h - 1)
                assert n_img_h * patch_h - overlap_size_h * (n_img_h - 1) == h

            if use_batch_processing:
                condition.gt_latent = condition_latent
                uncondition.gt_latent = condition_latent
                setattr(condition, hint_key, latent_hint)
                if getattr(uncondition, hint_key) is not None:
                    setattr(uncondition, hint_key, latent_hint)
                # Batch denoising
                cond_x0 = self.denoise(
                    noise_x,
                    sigma,
                    condition,
                    condition_video_augment_sigma_in_inference=condition_video_augment_sigma_in_inference,
                    seed=seed,
                ).x0_pred_replaced

                uncond_x0 = self.denoise(
                    noise_x,
                    sigma,
                    uncondition,
                    condition_video_augment_sigma_in_inference=condition_video_augment_sigma_in_inference,
                    seed=seed,
                ).x0_pred_replaced
                x0 = cond_x0 + guidance * (cond_x0 - uncond_x0)

                merged = merge_patches_into_video(x0, overlap_size_h, overlap_size_w, n_img_h, n_img_w)
                return split_video_into_patches(merged, patch_h, patch_w)

            batch_images = noise_x
            batch_sigma = sigma
            output = []
            for idx, cur_images in enumerate(batch_images):
                noise_x = cur_images.unsqueeze(0)
                sigma = batch_sigma[idx : idx + 1]
                condition.gt_latent = condition_latent[idx : idx + 1]
                uncondition.gt_latent = condition_latent[idx : idx + 1]
                setattr(condition, hint_key, latent_hint[idx : idx + 1])
                if getattr(uncondition, hint_key) is not None:
                    setattr(uncondition, hint_key, latent_hint[idx : idx + 1])

                cond_x0 = self.denoise(
                    noise_x,
                    sigma,
                    condition,
                    condition_video_augment_sigma_in_inference=condition_video_augment_sigma_in_inference,
                    seed=seed,
                ).x0_pred_replaced
                uncond_x0 = self.denoise(
                    noise_x,
                    sigma,
                    uncondition,
                    condition_video_augment_sigma_in_inference=condition_video_augment_sigma_in_inference,
                    seed=seed,
                ).x0_pred_replaced
                x0 = cond_x0 + guidance * (cond_x0 - uncond_x0)
                output.append(x0)
            output = rearrange(torch.stack(output), "(n t) b ... -> (b n t) ...", n=n_img_h, t=n_img_w)
            final_output = merge_patches_into_video(output, overlap_size_h, overlap_size_w, n_img_h, n_img_w)
            final_output = split_video_into_patches(final_output, patch_h, patch_w)
            return final_output

        return x0_fn

    def generate_samples_from_batch(
        self,
        data_batch: Dict,
        guidance: float = 1.5,
        seed: int = 1,
        state_shape: Tuple | None = None,
        n_sample: int | None = None,
        is_negative_prompt: bool = False,
        num_steps: int = 35,
        condition_latent: Union[torch.Tensor, None] = None,
        num_condition_t: Union[int, None] = None,
        condition_video_augment_sigma_in_inference: float = None,
        x_sigma_max: Optional[torch.Tensor] = None,
        sigma_max: float | None = None,
        target_h: int = 88,
        target_w: int = 160,
        patch_h: int = 88,
        patch_w: int = 160,
        use_batch_processing: bool = True,
    ) -> Tensor:
        """
        Generate samples from the batch. Based on given batch, it will automatically determine whether to generate image or video samples.
        Different from the base model, this function support condition latent as input, it will create a differnt x0_fn if condition latent is given.
        If this feature is stablized, we could consider to move this function to the base model.

        Args:
            condition_latent (Optional[torch.Tensor]): latent tensor in shape B,C,T,H,W as condition to generate video.
            num_condition_t (Optional[int]): number of condition latent T, if None, will use the whole first half
        """
        assert patch_h <= target_h and patch_w <= target_w
        if n_sample is None:
            input_key = self.input_data_key
            n_sample = data_batch[input_key].shape[0]
        if state_shape is None:
            log.debug(f"Default Video state shape is used. {self.state_shape}")
            state_shape = self.state_shape
        x0_fn = self.get_x0_fn_from_batch(
            data_batch,
            guidance,
            is_negative_prompt=is_negative_prompt,
            condition_latent=condition_latent,
            num_condition_t=num_condition_t,
            condition_video_augment_sigma_in_inference=condition_video_augment_sigma_in_inference,
            seed=seed,
            target_h=target_h,
            target_w=target_w,
            patch_h=patch_h,
            patch_w=patch_w,
            use_batch_processing=use_batch_processing,
        )

        if sigma_max is None:
            sigma_max = self.sde.sigma_max

        if x_sigma_max is None:
            x_sigma_max = (
                misc.arch_invariant_rand(
                    (n_sample,) + tuple(state_shape),
                    torch.float32,
                    self.tensor_kwargs["device"],
                    seed,
                )
                * sigma_max
            )

        if self.net.is_context_parallel_enabled:
            x_sigma_max = broadcast(x_sigma_max, to_tp=False, to_cp=True)
            x_sigma_max = split_inputs_cp(x=x_sigma_max, seq_dim=2, cp_group=self.net.cp_group)

        samples = self.sampler(x0_fn, x_sigma_max, num_steps=num_steps, sigma_max=sigma_max)

        if self.net.is_context_parallel_enabled:
            samples = cat_outputs_cp(samples, seq_dim=2, cp_group=self.net.cp_group)

        return samples


class VideoDiffusionT2VModelWithCtrl(DiffusionT2WModel):
    def build_model(self) -> torch.nn.ModuleDict:
        log.info("Start creating base model")
        base_model = super().build_model()
        # initialize base model
        config = self.config
        self.load_base_model(base_model)
        log.info("Done creating base model")

        log.info("Start creating ctrlnet model")
        net = lazy_instantiate(self.config.net_ctrl)
        conditioner = base_model.conditioner
        logvar = base_model.logvar
        # initialize controlnet encoder
        model = torch.nn.ModuleDict({"net": net, "conditioner": conditioner, "logvar": logvar})
        model.load_state_dict(base_model.state_dict(), strict=False)

        model.base_model = base_model
        log.info("Done creating ctrlnet model")

        self.hint_key = self.config.hint_key["hint_key"]
        return model

    @property
    def base_net(self):
        return self.model.base_model.net

    @property
    def conditioner(self):
        return self.model.conditioner

    def load_base_model(self, base_model) -> None:
        config = self.config
        if config.base_load_from is not None:
            checkpoint_path = config.base_load_from["load_path"]
        else:
            checkpoint_path = ""
        if checkpoint_path:
            log.info(f"Loading base model checkpoint (local): {checkpoint_path}")
            state_dict = torch.load(checkpoint_path, map_location=lambda storage, loc: storage, weights_only=False)
            log.success(f"Complete loading base model checkpoint (local): {checkpoint_path}")

            if "ema" in state_dict:
                # Copy the base model weights from ema model.
                log.info("Copying ema to base model")
                base_state_dict = {k.replace("-", "."): v for k, v in state_dict["ema"].items()}
            elif "model" in state_dict:
                # Copy the base model weights from reg model.
                log.warning("Using non-EMA base model")
                base_state_dict = state_dict["model"]
            else:
                log.info("Loading from an EMA only model")
                base_state_dict = state_dict
            base_model.load_state_dict(base_state_dict, strict=False)
        log.info("Done loading the base model checkpoint.")

    def get_data_and_condition(
        self, data_batch: dict[str, Tensor], **kwargs
    ) -> Tuple[Tensor, VideoConditionerWithCtrl]:
        # process the control input
        hint_key = self.config.hint_key["hint_key"]
        _data = {hint_key: data_batch[hint_key]}
        if IS_PREPROCESSED_KEY in data_batch:
            _data[IS_PREPROCESSED_KEY] = data_batch[IS_PREPROCESSED_KEY]
        data_batch[hint_key] = _data[hint_key]
        data_batch["hint_key"] = hint_key
        raw_state, latent_state, condition = super().get_data_and_condition(data_batch, **kwargs)
        use_multicontrol = (
            ("control_weight" in data_batch)
            and not isinstance(data_batch["control_weight"], float)
            and data_batch["control_weight"].shape[0] > 1
        )
        if use_multicontrol:  # encode individual conditions separately
            latent_hint = []
            num_conditions = data_batch[data_batch["hint_key"]].size(1) // 3
            for i in range(num_conditions):
                cond_mask = [False] * num_conditions
                cond_mask[i] = True
                latent_hint += [self.encode_latent(data_batch, cond_mask=cond_mask)]
            latent_hint = torch.cat(latent_hint)
        else:
            latent_hint = self.encode_latent(data_batch)

        # add extra conditions
        data_batch["latent_hint"] = latent_hint
        setattr(condition, hint_key, latent_hint)
        setattr(condition, "base_model", self.model.base_model)
        return raw_state, latent_state, condition

    def get_x_from_clean(
        self,
        in_clean_img: torch.Tensor,
        sigma_max: float | None,
        seed: int = 1,
    ) -> Tensor:
        """
        in_clean_img (torch.Tensor): input clean image for image-to-image/video-to-video by adding noise then denoising
        sigma_max (float): maximum sigma applied to in_clean_image for image-to-image/video-to-video
        """
        if in_clean_img is None:
            return None
        generator = torch.Generator(device=self.tensor_kwargs["device"])
        generator.manual_seed(seed)
        noise = torch.randn(*in_clean_img.shape, **self.tensor_kwargs, generator=generator)
        if sigma_max is None:
            sigma_max = self.sde.sigma_max
        x_sigma_max = in_clean_img + noise * sigma_max
        return x_sigma_max

    def encode_latent(self, data_batch: dict, cond_mask: list = []) -> torch.Tensor:
        x = data_batch[data_batch["hint_key"]]
        latent = []
        # control input goes through tokenizer, which always takes 3-input channels
        num_conditions = x.size(1) // 3  # input conditions were concatenated along channel dimension
        if num_conditions > 1 and self.config.hint_dropout_rate > 0:
            if torch.is_grad_enabled():  # during training, randomly dropout some conditions
                cond_mask = torch.rand(num_conditions) > self.config.hint_dropout_rate
                if not cond_mask.any():  # make sure at least one condition is present
                    cond_mask = [True] * num_conditions
            elif not cond_mask:  # during inference, use hint_mask to indicate which conditions are used
                cond_mask = self.config.hint_mask
        else:
            cond_mask = [True] * num_conditions
        for idx in range(0, x.size(1), 3):
            x_rgb = x[:, idx : idx + 3]
            if not cond_mask[idx // 3]:  # if the condition is not selected, replace with a black image
                x_rgb = torch.zeros_like(x_rgb)
            latent.append(self.encode(x_rgb))
        latent = torch.cat(latent, dim=1)
        return latent

    def get_x0_fn_from_batch(
        self,
        data_batch: Dict,
        guidance: float = 1.5,
        is_negative_prompt: bool = False,
        condition_latent: torch.Tensor = None,
        num_condition_t: Union[int, None] = None,
        condition_video_augment_sigma_in_inference: float = None,
    ) -> Callable:
        """
        Generates a callable function `x0_fn` based on the provided data batch and guidance factor.

        This function first processes the input data batch through a conditioning workflow (`conditioner`) to obtain conditioned and unconditioned states. It then defines a nested function `x0_fn` which applies a denoising operation on an input `noise_x` at a given noise level `sigma` using both the conditioned and unconditioned states.

        Args:
        - data_batch (Dict): A batch of data used for conditioning. The format and content of this dictionary should align with the expectations of the `self.conditioner`
        - guidance (float, optional): A scalar value that modulates the influence of the conditioned state relative to the unconditioned state in the output. Defaults to 1.5.
        - is_negative_prompt (bool): use negative prompt t5 in uncondition if true
            condition_latent (torch.Tensor): latent tensor in shape B,C,T,H,W as condition to generate video.
        - num_condition_t (int): number of condition latent T, used in inference to decide the condition region and config.conditioner.video_cond_bool.condition_location == "first_n"
        - condition_video_augment_sigma_in_inference (float): sigma for condition video augmentation in inference

        Returns:
        - Callable: A function `x0_fn(noise_x, sigma)` that takes two arguments, `noise_x` and `sigma`, and return x0 predictoin

        The returned function is suitable for use in scenarios where a denoised state is required based on both conditioned and unconditioned inputs, with an adjustable level of guidance influence.
        """
        # data_batch should be the one processed by self.get_data_and_condition
        if is_negative_prompt:
            condition, uncondition = self.conditioner.get_condition_with_negative_prompt(data_batch)
        else:
            condition, uncondition = self.conditioner.get_condition_uncondition(data_batch)
        # Add extra conditions for ctrlnet.
        latent_hint = data_batch["latent_hint"]
        hint_key = data_batch["hint_key"]
        setattr(condition, hint_key, latent_hint)
        if "use_none_hint" in data_batch and data_batch["use_none_hint"]:
            setattr(uncondition, hint_key, None)
        else:
            setattr(uncondition, hint_key, latent_hint)

        # Handle regional prompting information
        if "regional_contexts" in data_batch and "region_masks" in data_batch:
            setattr(condition, "regional_contexts", data_batch["regional_contexts"])
            setattr(condition, "region_masks", data_batch["region_masks"])
            # For unconditioned generation, we still need the region masks but not the regional contexts
            setattr(uncondition, "region_masks", data_batch["region_masks"])
            setattr(uncondition, "regional_contexts", None)

        to_cp = self.net.is_context_parallel_enabled
        # For inference, check if parallel_state is initialized
        if parallel_state.is_initialized():
            condition = broadcast_condition(condition, to_tp=False, to_cp=to_cp)
            uncondition = broadcast_condition(uncondition, to_tp=False, to_cp=to_cp)

            cp_group = parallel_state.get_context_parallel_group()
            latent_hint = getattr(condition, hint_key)
            seq_dim = 3 if latent_hint.ndim == 6 else 2
            latent_hint = split_inputs_cp(latent_hint, seq_dim=seq_dim, cp_group=cp_group)
            setattr(condition, hint_key, latent_hint)
            if getattr(uncondition, hint_key) is not None:
                setattr(uncondition, hint_key, latent_hint)

            if hasattr(condition, "regional_contexts") and getattr(condition, "regional_contexts") is not None:
                regional_contexts = getattr(condition, "regional_contexts")
                regional_contexts = split_inputs_cp(regional_contexts, seq_dim=2, cp_group=cp_group)
                setattr(condition, "regional_contexts", regional_contexts)

            if hasattr(condition, "region_masks") and getattr(condition, "region_masks") is not None:
                region_masks = getattr(condition, "region_masks")
                region_masks = split_inputs_cp(region_masks, seq_dim=2, cp_group=cp_group)
                setattr(condition, "region_masks", region_masks)
                setattr(uncondition, "region_masks", region_masks)
        setattr(condition, "base_model", self.model.base_model)
        setattr(uncondition, "base_model", self.model.base_model)
        if hasattr(self, "hint_encoders"):
            self.model.net.hint_encoders = self.hint_encoders

        def x0_fn(noise_x: torch.Tensor, sigma: torch.Tensor) -> torch.Tensor:
            cond_x0 = self.denoise(
                noise_x,
                sigma,
                condition,
            ).x0
            uncond_x0 = self.denoise(
                noise_x,
                sigma,
                uncondition,
            ).x0
            return cond_x0 + guidance * (cond_x0 - uncond_x0)

        return x0_fn

    def generate_samples_from_batch(
        self,
        data_batch: Dict,
        guidance: float = 1.5,
        seed: int = 1,
        state_shape: Tuple | None = None,
        n_sample: int | None = None,
        is_negative_prompt: bool = False,
        num_steps: int = 35,
        condition_latent: Union[torch.Tensor, None] = None,
        num_condition_t: Union[int, None] = None,
        condition_video_augment_sigma_in_inference: float = None,
        x_sigma_max: Optional[torch.Tensor] = None,
        sigma_max: float | None = None,
        **kwargs,
    ) -> Tensor:
        """
        Generate samples from the batch. Based on given batch, it will automatically determine whether to generate image or video samples.
        Different from the base model, this function support condition latent as input, it will create a differnt x0_fn if condition latent is given.
        If this feature is stablized, we could consider to move this function to the base model.

        Args:
            condition_latent (Optional[torch.Tensor]): latent tensor in shape B,C,T,H,W as condition to generate video.
            num_condition_t (Optional[int]): number of condition latent T, if None, will use the whole first half
        """
        if n_sample is None:
            input_key = self.input_data_key
            n_sample = data_batch[input_key].shape[0]
        if state_shape is None:
            log.debug(f"Default Video state shape is used. {self.state_shape}")
            state_shape = self.state_shape

        x0_fn = self.get_x0_fn_from_batch(
            data_batch,
            guidance,
            is_negative_prompt=is_negative_prompt,
            condition_latent=condition_latent,
            num_condition_t=num_condition_t,
            condition_video_augment_sigma_in_inference=condition_video_augment_sigma_in_inference,
        )

        if sigma_max is None:
            sigma_max = self.sde.sigma_max

        if x_sigma_max is None:
            x_sigma_max = (
                misc.arch_invariant_rand(
                    (n_sample,) + tuple(state_shape),
                    torch.float32,
                    self.tensor_kwargs["device"],
                    seed,
                )
                * sigma_max
            )

        if self.net.is_context_parallel_enabled:
            x_sigma_max = broadcast(x_sigma_max, to_tp=False, to_cp=True)
            x_sigma_max = split_inputs_cp(x=x_sigma_max, seq_dim=2, cp_group=self.net.cp_group)

        samples = self.sampler(x0_fn, x_sigma_max, num_steps=num_steps, sigma_max=sigma_max)

        if self.net.is_context_parallel_enabled:
            samples = cat_outputs_cp(samples, seq_dim=2, cp_group=self.net.cp_group)
        return samples


class VideoDistillModelWithCtrl(DistillV2WModel):
    def build_model(self) -> torch.nn.ModuleDict:
        log.info("Start creating base model")
        base_model = super().build_model()
        # initialize base model
        log.info("Done creating base model")

        log.info("Start creating ctrlnet model")
        net = DistillControlNet(self.config)
        net.base_model.net.load_state_dict(base_model["net"].state_dict())
        conditioner = base_model.conditioner
        logvar = base_model.logvar
        # initialize controlnet encoder
        model = torch.nn.ModuleDict({"net": net, "conditioner": conditioner, "logvar": logvar})
        model.base_model = net.base_model.net

        self.hint_key = self.config.hint_key["hint_key"]
        return model

    @property
    def base_net(self):
        return self.model.base_model.net

    @property
    def conditioner(self):
        return self.model.conditioner

    def get_data_and_condition(
        self, data_batch: dict[str, Tensor], **kwargs
    ) -> Tuple[Tensor, VideoConditionerWithCtrl]:
        # process the control input
        hint_key = self.config.hint_key["hint_key"]
        _data = {hint_key: data_batch[hint_key]}
        if IS_PREPROCESSED_KEY in data_batch:
            _data[IS_PREPROCESSED_KEY] = data_batch[IS_PREPROCESSED_KEY]
        data_batch[hint_key] = _data[hint_key]
        data_batch["hint_key"] = hint_key
        raw_state, latent_state, condition = super().get_data_and_condition(data_batch, **kwargs)
        use_multicontrol = (
            ("control_weight" in data_batch)
            and not isinstance(data_batch["control_weight"], float)
            and data_batch["control_weight"].shape[0] > 1
        )
        if use_multicontrol:  # encode individual conditions separately
            latent_hint = []
            num_conditions = data_batch[data_batch["hint_key"]].size(1) // 3
            for i in range(num_conditions):
                cond_mask = [False] * num_conditions
                cond_mask[i] = True
                latent_hint += [self.encode_latent(data_batch, cond_mask=cond_mask)]
            latent_hint = torch.cat(latent_hint)
        else:
            latent_hint = self.encode_latent(data_batch)

        # add extra conditions
        data_batch["latent_hint"] = latent_hint
        setattr(condition, hint_key, latent_hint)
        setattr(condition, "base_model", self.model.base_model)
        return raw_state, latent_state, condition

    def get_x_from_clean(
        self,
        in_clean_img: torch.Tensor,
        sigma_max: float | None,
        seed: int = 1,
    ) -> Tensor:
        """
        in_clean_img (torch.Tensor): input clean image for image-to-image/video-to-video by adding noise then denoising
        sigma_max (float): maximum sigma applied to in_clean_image for image-to-image/video-to-video
        """
        if in_clean_img is None:
            return None
        generator = torch.Generator(device=self.tensor_kwargs["device"])
        generator.manual_seed(seed)
        noise = torch.randn(*in_clean_img.shape, **self.tensor_kwargs, generator=generator)
        if sigma_max is None:
            sigma_max = self.sde.sigma_max
        x_sigma_max = in_clean_img + noise * sigma_max
        return x_sigma_max

    def encode_latent(self, data_batch: dict, cond_mask: list = []) -> torch.Tensor:
        x = data_batch[data_batch["hint_key"]]
        latent = []
        # control input goes through tokenizer, which always takes 3-input channels
        num_conditions = x.size(1) // 3  # input conditions were concatenated along channel dimension
        if num_conditions > 1 and self.config.hint_dropout_rate > 0:
            if torch.is_grad_enabled():  # during training, randomly dropout some conditions
                cond_mask = torch.rand(num_conditions) > self.config.hint_dropout_rate
                if not cond_mask.any():  # make sure at least one condition is present
                    cond_mask = [True] * num_conditions
            elif not cond_mask:  # during inference, use hint_mask to indicate which conditions are used
                cond_mask = self.config.hint_mask
        else:
            cond_mask = [True] * num_conditions
        for idx in range(0, x.size(1), 3):
            x_rgb = x[:, idx : idx + 3]
            if not cond_mask[idx // 3]:  # if the condition is not selected, replace with a black image
                x_rgb = torch.zeros_like(x_rgb)
            latent.append(self.encode(x_rgb))
        latent = torch.cat(latent, dim=1)
        return latent

    def generate_samples_from_batch(
        self,
        data_batch: Dict,
        guidance: float = 1.5,
        seed: int = 1,
        state_shape: Tuple | None = None,
        n_sample: int | None = None,
        is_negative_prompt: bool = False,
        num_steps: int = 1,  # Ignored for distilled models
        condition_latent: Union[torch.Tensor, None] = None,
        num_condition_t: Union[int, None] = None,
        condition_video_augment_sigma_in_inference: float = None,
        x_sigma_max: Optional[torch.Tensor] = None,
        sigma_max: float | None = None,
        target_h: int = 88,
        target_w: int = 160,
        patch_h: int = 88,
        patch_w: int = 160,
        **kwargs,
    ) -> torch.Tensor:
        """Single-step generation matching internal distilled model"""

        # Same preprocessing as base class
        self._normalize_video_databatch_inplace(data_batch)
        self._augment_image_dim_inplace(data_batch)

        if n_sample is None:
            # input_key = self.input_image_key if is_image_batch else self.input_data_key
            input_key = self.input_data_key
            n_sample = data_batch[input_key].shape[0]
        if state_shape is None:
            log.debug(f"Default Video state shape is used. {self.state_shape}")
            state_shape = self.state_shape
        if sigma_max is None:
            sigma_max = self.sde.sigma_max
        if x_sigma_max is None:
            x_sigma_max = (
                misc.arch_invariant_rand(
                    (n_sample,) + tuple(state_shape),
                    torch.float32,
                    self.tensor_kwargs["device"],
                    seed,
                )
                * sigma_max
            )

        # Generate initial noise
        batch_shape = (n_sample, *state_shape)
        generator = torch.Generator(device=self.tensor_kwargs["device"])
        generator.manual_seed(seed)
        random_noise = torch.randn(*batch_shape, generator=generator, **self.tensor_kwargs)

        if is_negative_prompt:
            condition, uncondition = self.conditioner.get_condition_with_negative_prompt(data_batch)
        else:
            condition, uncondition = self.conditioner.get_condition_uncondition(data_batch)
        # Handle conditioning
        if condition_latent is None:
            condition_latent = torch.zeros(data_batch["latent_hint"].shape, **self.tensor_kwargs)
            num_condition_t = 0
            condition_video_augment_sigma_in_inference = 1000

        condition.video_cond_bool = True
        condition = self.add_condition_video_indicator_and_video_input_mask(
            condition_latent, condition, num_condition_t
        )
        uncondition.video_cond_bool = True  # Not do cfg on condition frames
        uncondition = self.add_condition_video_indicator_and_video_input_mask(
            condition_latent, uncondition, num_condition_t
        )
        uncondition.condition_video_indicator = condition.condition_video_indicator.clone()
        uncondition.condition_video_input_mask = condition.condition_video_input_mask.clone()

        latent_hint = data_batch["latent_hint"]
        hint_key = data_batch["hint_key"]
        setattr(condition, hint_key, latent_hint)
        if "use_none_hint" in data_batch and data_batch["use_none_hint"]:
            setattr(uncondition, hint_key, None)
        else:
            setattr(uncondition, hint_key, latent_hint)

        to_cp = self.net.is_context_parallel_enabled
        # For inference, check if parallel_state is initialized
        if parallel_state.is_initialized():
            condition = broadcast_condition(condition, to_tp=False, to_cp=to_cp)
            uncondition = broadcast_condition(uncondition, to_tp=False, to_cp=to_cp)

            cp_group = parallel_state.get_context_parallel_group()
            latent_hint = getattr(condition, hint_key)
            seq_dim = 3 if latent_hint.ndim == 6 else 2
            latent_hint = split_inputs_cp(latent_hint, seq_dim=seq_dim, cp_group=cp_group)
            setattr(condition, hint_key, latent_hint)
            if getattr(uncondition, hint_key) is not None:
                setattr(uncondition, hint_key, latent_hint)

        # not sure if this is consistent w the new distilled model?
        setattr(condition, "base_model", self.model.base_model)
        setattr(uncondition, "base_model", self.model.base_model)
        if hasattr(self, "hint_encoders"):
            self.model.net.hint_encoders = self.hint_encoders

        cp_enabled = self.net.is_context_parallel_enabled
        if cp_enabled:
            random_noise = split_inputs_cp(x=random_noise, seq_dim=2, cp_group=self.net.cp_group)

        condition.gt_latent = condition_latent
        uncondition.gt_latent = condition_latent

        if self.net.is_context_parallel_enabled:
            x_sigma_max = broadcast(x_sigma_max, to_tp=False, to_cp=True)
            x_sigma_max = split_inputs_cp(x=x_sigma_max, seq_dim=2, cp_group=self.net.cp_group)

        samples = self._forward_distilled(
            epsilon=random_noise,
            condition=condition,
            uncondition=uncondition,
            guidance=guidance,
            hint_key=hint_key,
            condition_video_augment_sigma_in_inference=condition_video_augment_sigma_in_inference,
            target_h=target_h,
            target_w=target_w,
            patch_h=patch_h,
            patch_w=patch_w,
            seed=seed,
            inference_mode=True,
            **kwargs,
        )
        cp_enabled = self.net.is_context_parallel_enabled
        if cp_enabled:
            samples = cat_outputs_cp(samples, seq_dim=2, cp_group=self.net.cp_group)

        return samples

    def _forward_distilled(
        self,
        epsilon: torch.Tensor,
        condition: Any,
        uncondition: Any,
        guidance: float,
        hint_key: str,
        condition_video_augment_sigma_in_inference: float = 0.001,
        target_h: int = 88,
        target_w: int = 160,
        patch_h: int = 88,
        patch_w: int = 160,
        seed: int = 1,
        inference_mode: bool = True,
        **kwargs,
    ) -> torch.Tensor:
        """Single forward pass for distilled models"""
        B = epsilon.shape[0]  # Batch dimension

        w, h = target_w, target_h
        n_img_w = (w - 1) // patch_w + 1
        n_img_h = (h - 1) // patch_h + 1

        overlap_size_w = overlap_size_h = 0
        if n_img_w > 1:
            overlap_size_w = (n_img_w * patch_w - w) // (n_img_w - 1)
            assert n_img_w * patch_w - overlap_size_w * (n_img_w - 1) == w
        if n_img_h > 1:
            overlap_size_h = (n_img_h * patch_h - h) // (n_img_h - 1)
            assert n_img_h * patch_h - overlap_size_h * (n_img_h - 1) == h

        # Single denoising step at sigma_max
        sigma_max = torch.tensor(self.sde.sigma_max).repeat(epsilon.size(0)).to(epsilon.device)

        # Direct network forward pass - no iterative sampling
        with torch.no_grad():
            cond_x0 = self.denoise(
                noise_x=epsilon * self.sde.sigma_max,  # Scale noise to sigma_max
                sigma=sigma_max,
                condition=condition,
                condition_video_augment_sigma_in_inference=condition_video_augment_sigma_in_inference,
                seed=seed,
            ).x0_pred_replaced
            return cond_x0