File size: 8,411 Bytes
226c7c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations

import os
from typing import Any, Dict, Optional, Type, TypeVar, Union

import attrs
import torch

try:
    from megatron.core import ModelParallelConfig

    USE_MEGATRON = True
except ImportError:
    USE_MEGATRON = False
    print("Megatron-core is not installed.")

from cosmos_transfer1.utils.callback import EMAModelCallback, ProgressBarCallback
from cosmos_transfer1.utils.ddp_config import DDPConfig, make_freezable
from cosmos_transfer1.utils.lazy_config import LazyCall as L
from cosmos_transfer1.utils.lazy_config import LazyDict
from cosmos_transfer1.utils.misc import Color


def _pretty_print_attrs_instance(obj: object, indent: int = 0, use_color: bool = False) -> str:
    """
    Recursively pretty prints attrs objects with color.
    """

    assert attrs.has(obj.__class__)

    lines: list[str] = []
    for attribute in attrs.fields(obj.__class__):
        value = getattr(obj, attribute.name)
        if attrs.has(value.__class__):
            if use_color:
                lines.append("   " * indent + Color.cyan("* ") + Color.green(attribute.name) + ":")
            else:
                lines.append("   " * indent + "* " + attribute.name + ":")
            lines.append(_pretty_print_attrs_instance(value, indent + 1, use_color))
        else:
            if use_color:
                lines.append(
                    "   " * indent + Color.cyan("* ") + Color.green(attribute.name) + ": " + Color.yellow(value)
                )
            else:
                lines.append("   " * indent + "* " + attribute.name + ": " + str(value))
    return "\n".join(lines)


@make_freezable
@attrs.define(slots=False)
class JobConfig:
    # Project name.
    project: str = ""
    # Experiment name.
    group: str = ""
    # Run/job name.
    name: str = ""

    @property
    def path(self) -> str:
        return f"{self.project}/{self.group}/{self.name}"

    @property
    def path_local(self) -> str:
        local_root = os.environ.get("OUTPUT_ROOT", "checkpoints")
        return f"{local_root}/{self.path}"


@make_freezable
@attrs.define(slots=False)
class EMAConfig:
    # Enable tracking a set of exponential moving average (EMA) weights.
    enabled: bool = False
    # EMA decay rate.
    beta: float = 0.9999
    # Enable removing "_orig_mod-" from buffer names that is added by torch.compile
    torch_compile_buffer_renaming: bool = False


@make_freezable
@attrs.define(slots=False)
class CuDNNConfig:
    # Set to True for better reproducibility of the results (only using deterministic cudnn functions).
    deterministic: bool = False
    # If set to True, cudnn will benchmark several algorithms and pick the fastest one.
    benchmark: bool = True


@make_freezable
@attrs.define(slots=False)
class JITConfig:
    # Enable exporting a JIT compiled model.
    enabled: bool = False
    # Input tensor shape, for example input.
    input_shape: Union[list[int], None] = None
    # Device to compile onto.
    device: str = "cuda"
    # # Data type to compile onto.
    dtype: str = "bfloat16"
    # Strict mode for PyTorch JIT.
    strict: bool = True


@make_freezable
@attrs.define(slots=False)
class CheckpointConfig:
    # possible checkpoint class
    type: Optional[Dict] = None
    # for dcp, whether to use async mode
    dcp_async_mode_enabled: bool = False
    # Save the checkpoint every N iterations.
    save_iter: int = 999999999
    # Path of model weights to resume the checkpoint from.
    load_path: str = ""
    # Whether to load the training states (optimizer/scheduler/grad-scaler) from the checkpoint path.
    load_training_state: bool = False
    # Whether to load the scheduler state only from the checkpoint path. If load_training_state is True, this will be ignored.
    only_load_scheduler_state: bool = False
    # Load state_dict to the models in strict mode.
    strict_resume: bool = True
    # Print detailed information during checkpoint saving/loading.
    verbose: bool = True
    # Configs for JIT compiling EMA model.
    jit: JITConfig = attrs.field(factory=JITConfig)
    # keys not to resume from the checkpoint, choices: ["model", "optim", "scheduler", "trainer"]
    keys_not_to_resume: list[str] = []
    # Whether to use the local filesystem for broadcasting checkpoint data (used for Tensor Parallel Checkpointer).
    broadcast_via_filesystem: bool = False
    load_ema_to_reg: bool = False


@make_freezable
@attrs.define(slots=False)
class TrainerConfig:
    from cosmos_transfer1.utils.trainer import Trainer

    type: Type[Trainer] = Trainer
    # Set the callback class.
    # Defaults to the callbacks below.
    callbacks: LazyDict = LazyDict(
        dict(
            ema=L(EMAModelCallback)(),
            progress_bar=L(ProgressBarCallback)(),
        )
    )
    # distributed parallelism strategy
    distributed_parallelism: str = "ddp"
    # Distributed data parallel configs.
    ddp: DDPConfig = attrs.field(factory=DDPConfig)
    # cuDNN configs.
    cudnn: CuDNNConfig = attrs.field(factory=CuDNNConfig)
    # Set the random seed.
    seed: int = 0
    # Gradient scaler arguments (for torch.amp.GradScaler).
    grad_scaler_args: dict = attrs.field(factory=lambda: dict(enabled=False))
    # Maximum number of iterations to train the model.
    max_iter: int = 999999999
    # Maximum number of iterations to validate the model. If None, validate on the entire dataset.
    max_val_iter: int | None = None
    # How often we log the training stats.
    logging_iter: int = 100
    # Whether we want to run the validation routines.
    run_validation: bool = True
    # How often we evaluate on the validation set.
    validation_iter: int = 999999999
    # Kill the process after N seconds since the last iteration (usually means dead job).
    timeout_period: int = 999999999
    # Tensor memory organization format.
    memory_format: torch.memory_format = torch.preserve_format
    # Gradient accumulation (update step every N iteration).
    grad_accum_iter: int = 1
    # Whether to use the timestamp as the seed. Needed to ensure real randomness in loading data.
    timestamp_seed: bool = True
    # # Profiling config
    # profiling: Profiling = attrs.field(factory=Profiling)


@make_freezable
@attrs.define(slots=False)
class Config:
    """Config for a job.

    See /README.md/Configuration System for more info.
    """

    # Model configs.
    model: LazyDict
    # Optimizer configs.
    optimizer: LazyDict = LazyDict(dict(dummy=None))
    # Scheduler configs.
    scheduler: LazyDict = LazyDict(dict(dummy=None))
    # Training data configs.
    dataloader_train: LazyDict = LazyDict(dict(dummy=None))
    # Validation data configs.
    dataloader_val: LazyDict = LazyDict(dict(dummy=None))

    # Training job configs.
    job: JobConfig = attrs.field(factory=JobConfig)

    # Trainer configs.
    trainer: TrainerConfig = attrs.field(factory=TrainerConfig)

    # Megatron-Core configs
    if USE_MEGATRON:
        # Megatron-Core configs
        model_parallel: ModelParallelConfig = attrs.field(factory=ModelParallelConfig)
    else:
        model_parallel: None = None

    # Checkpointer configs.
    checkpoint: CheckpointConfig = attrs.field(factory=CheckpointConfig)

    def pretty_print(self, use_color: bool = False) -> str:
        return _pretty_print_attrs_instance(self, 0, use_color)

    def to_dict(self) -> dict[str, Any]:
        return attrs.asdict(self)

    def validate(self) -> None:
        """Validate that the config has all required fields."""
        assert self.job.project != "", "Project name is required."
        assert self.job.group != "", "Group name is required."
        assert self.job.name != "", "Job name is required."