|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""A library for image tokenizers inference.""" |
|
|
|
from typing import Any |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from cosmos_transfer1.auxiliary.tokenizer.inference.utils import ( |
|
load_decoder_model, |
|
load_encoder_model, |
|
load_model, |
|
numpy2tensor, |
|
pad_image_batch, |
|
tensor2numpy, |
|
unpad_image_batch, |
|
) |
|
|
|
|
|
class ImageTokenizer(torch.nn.Module): |
|
def __init__( |
|
self, |
|
checkpoint: str = None, |
|
checkpoint_enc: str = None, |
|
checkpoint_dec: str = None, |
|
tokenizer_config: dict[str, Any] = None, |
|
device: str = "cuda", |
|
dtype: str = "bfloat16", |
|
) -> None: |
|
super().__init__() |
|
self._device = device |
|
self._dtype = getattr(torch, dtype) |
|
self._full_model = ( |
|
load_model(checkpoint, tokenizer_config, device).to(self._dtype) if checkpoint is not None else None |
|
) |
|
self._enc_model = ( |
|
load_encoder_model(checkpoint_enc, tokenizer_config, device).to(self._dtype) |
|
if checkpoint_enc is not None |
|
else None |
|
) |
|
self._dec_model = ( |
|
load_decoder_model(checkpoint_dec, tokenizer_config, device).to(self._dtype) |
|
if checkpoint_dec is not None |
|
else None |
|
) |
|
|
|
@torch.no_grad() |
|
def autoencode(self, input_tensor: torch.Tensor) -> torch.Tensor: |
|
"""Reconstrcuts a batch of image tensors after embedding into a latent. |
|
|
|
Args: |
|
input_tensor: The input image Bx3xHxW layout, range [-1..1]. |
|
Returns: |
|
The reconstructed tensor, layout Bx3xHxW, range [-1..1]. |
|
""" |
|
if self._full_model is not None: |
|
output_tensor = self._full_model(input_tensor) |
|
output_tensor = output_tensor[0] if isinstance(output_tensor, tuple) else output_tensor |
|
else: |
|
output_latent = self.encode(input_tensor)[0] |
|
output_tensor = self.decode(output_latent) |
|
return output_tensor |
|
|
|
@torch.no_grad() |
|
def decode(self, input_latent: torch.Tensor) -> torch.Tensor: |
|
"""Decodes an image from a provided latent embedding. |
|
|
|
Args: |
|
input_latent: The continuous latent Bx16xhxw for CI, |
|
or the discrete indices Bxhxw for DI. |
|
Returns: |
|
The output tensor in Bx3xHxW, range [-1..1]. |
|
""" |
|
return self._dec_model(input_latent) |
|
|
|
@torch.no_grad() |
|
def encode(self, input_tensor: torch.Tensor) -> tuple[torch.Tensor]: |
|
"""Encodes an image into a latent embedding or code. |
|
|
|
Args: |
|
input_tensor: The input tensor Bx3xHxW layout, range [-1..1]. |
|
Returns: |
|
For continuous image (CI) tokenizer, the tuple contains: |
|
- The latent embedding, Bx16x(h)x(w), where the compression |
|
rate is (H/h x W/w), and channel dimension of 16. |
|
For discrete image (DI) tokenizer, the tuple contains: |
|
- The indices, Bx(h)x(w), from a codebook of size 64K, which |
|
corresponds to FSQ levels of (8,8,8,5,5,5). |
|
- The discrete code, Bx6x(h)x(w), where the compression rate is |
|
again (H/h x W/w), and channel dimension of 6. |
|
""" |
|
output_latent = self._enc_model(input_tensor) |
|
if isinstance(output_latent, torch.Tensor): |
|
return output_latent |
|
return output_latent[:-1] |
|
|
|
@torch.no_grad() |
|
def forward(self, image: np.ndarray) -> np.ndarray: |
|
"""Reconstructs an image using a pre-trained tokenizer. |
|
|
|
Args: |
|
image: The input image BxHxWxC layout, range [0..255]. |
|
Returns: |
|
The reconstructed image in range [0..255], layout BxHxWxC. |
|
""" |
|
padded_input_image, crop_region = pad_image_batch(image) |
|
input_tensor = numpy2tensor(padded_input_image, dtype=self._dtype, device=self._device) |
|
output_tensor = self.autoencode(input_tensor) |
|
padded_output_image = tensor2numpy(output_tensor) |
|
return unpad_image_batch(padded_output_image, crop_region) |
|
|