|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""The model definition for Continuous 2D layers |
|
|
|
Adapted from: https://github.com/CompVis/stable-diffusion/blob/ |
|
21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/ldm/modules/diffusionmodules/model.py |
|
|
|
[Copyright (c) 2022 Robin Rombach and Patrick Esser and contributors] |
|
https://github.com/CompVis/stable-diffusion/blob/ |
|
21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/LICENSE |
|
""" |
|
|
|
import math |
|
|
|
import numpy as np |
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from loguru import logger as logging |
|
|
|
from cosmos_transfer1.auxiliary.tokenizer.modules.patching import Patcher, UnPatcher |
|
from cosmos_transfer1.auxiliary.tokenizer.modules.utils import Normalize, nonlinearity |
|
|
|
|
|
class Upsample(nn.Module): |
|
def __init__(self, in_channels: int): |
|
super().__init__() |
|
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = x.repeat_interleave(2, dim=2).repeat_interleave(2, dim=3) |
|
return self.conv(x) |
|
|
|
|
|
class Downsample(nn.Module): |
|
def __init__(self, in_channels: int): |
|
super().__init__() |
|
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
pad = (0, 1, 0, 1) |
|
x = F.pad(x, pad, mode="constant", value=0) |
|
return self.conv(x) |
|
|
|
|
|
class ResnetBlock(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
in_channels: int, |
|
out_channels: int = None, |
|
dropout: float, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
out_channels = in_channels if out_channels is None else out_channels |
|
|
|
self.norm1 = Normalize(in_channels) |
|
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) |
|
self.norm2 = Normalize(out_channels) |
|
self.dropout = nn.Dropout(dropout) |
|
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) |
|
self.nin_shortcut = ( |
|
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) |
|
if in_channels != out_channels |
|
else nn.Identity() |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
h = x |
|
h = self.norm1(h) |
|
h = nonlinearity(h) |
|
h = self.conv1(h) |
|
|
|
h = self.norm2(h) |
|
h = nonlinearity(h) |
|
h = self.dropout(h) |
|
h = self.conv2(h) |
|
|
|
x = self.nin_shortcut(x) |
|
|
|
return x + h |
|
|
|
|
|
class AttnBlock(nn.Module): |
|
def __init__(self, in_channels: int): |
|
super().__init__() |
|
|
|
self.norm = Normalize(in_channels) |
|
self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) |
|
self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) |
|
self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) |
|
self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
|
|
h_ = x |
|
h_ = self.norm(h_) |
|
q = self.q(h_) |
|
k = self.k(h_) |
|
v = self.v(h_) |
|
|
|
|
|
b, c, h, w = q.shape |
|
q = q.reshape(b, c, h * w) |
|
q = q.permute(0, 2, 1) |
|
k = k.reshape(b, c, h * w) |
|
w_ = torch.bmm(q, k) |
|
w_ = w_ * (int(c) ** (-0.5)) |
|
w_ = F.softmax(w_, dim=2) |
|
|
|
|
|
v = v.reshape(b, c, h * w) |
|
w_ = w_.permute(0, 2, 1) |
|
h_ = torch.bmm(v, w_) |
|
h_ = h_.reshape(b, c, h, w) |
|
|
|
h_ = self.proj_out(h_) |
|
|
|
return x + h_ |
|
|
|
|
|
class Encoder(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
channels: int, |
|
channels_mult: list[int], |
|
num_res_blocks: int, |
|
attn_resolutions: list[int], |
|
dropout: float, |
|
resolution: int, |
|
z_channels: int, |
|
spatial_compression: int, |
|
**ignore_kwargs, |
|
): |
|
super().__init__() |
|
self.num_resolutions = len(channels_mult) |
|
self.num_res_blocks = num_res_blocks |
|
|
|
|
|
patch_size = ignore_kwargs.get("patch_size", 1) |
|
self.patcher = Patcher(patch_size, ignore_kwargs.get("patch_method", "rearrange")) |
|
in_channels = in_channels * patch_size * patch_size |
|
|
|
|
|
self.num_downsamples = int(math.log2(spatial_compression)) - int(math.log2(patch_size)) |
|
assert ( |
|
self.num_downsamples <= self.num_resolutions |
|
), f"we can only downsample {self.num_resolutions} times at most" |
|
|
|
|
|
self.conv_in = torch.nn.Conv2d(in_channels, channels, kernel_size=3, stride=1, padding=1) |
|
|
|
curr_res = resolution // patch_size |
|
in_ch_mult = (1,) + tuple(channels_mult) |
|
self.in_ch_mult = in_ch_mult |
|
self.down = nn.ModuleList() |
|
for i_level in range(self.num_resolutions): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_in = channels * in_ch_mult[i_level] |
|
block_out = channels * channels_mult[i_level] |
|
for _ in range(self.num_res_blocks): |
|
block.append( |
|
ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_out, |
|
dropout=dropout, |
|
) |
|
) |
|
block_in = block_out |
|
if curr_res in attn_resolutions: |
|
attn.append(AttnBlock(block_in)) |
|
down = nn.Module() |
|
down.block = block |
|
down.attn = attn |
|
if i_level < self.num_downsamples: |
|
down.downsample = Downsample(block_in) |
|
curr_res = curr_res // 2 |
|
self.down.append(down) |
|
|
|
|
|
self.mid = nn.Module() |
|
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, dropout=dropout) |
|
self.mid.attn_1 = AttnBlock(block_in) |
|
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, dropout=dropout) |
|
|
|
|
|
self.norm_out = Normalize(block_in) |
|
self.conv_out = torch.nn.Conv2d(block_in, z_channels, kernel_size=3, stride=1, padding=1) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.patcher(x) |
|
|
|
|
|
hs = [self.conv_in(x)] |
|
for i_level in range(self.num_resolutions): |
|
for i_block in range(self.num_res_blocks): |
|
h = self.down[i_level].block[i_block](hs[-1]) |
|
if len(self.down[i_level].attn) > 0: |
|
h = self.down[i_level].attn[i_block](h) |
|
hs.append(h) |
|
if i_level < self.num_downsamples: |
|
hs.append(self.down[i_level].downsample(hs[-1])) |
|
|
|
|
|
h = hs[-1] |
|
h = self.mid.block_1(h) |
|
h = self.mid.attn_1(h) |
|
h = self.mid.block_2(h) |
|
|
|
|
|
h = self.norm_out(h) |
|
h = nonlinearity(h) |
|
h = self.conv_out(h) |
|
return h |
|
|
|
|
|
class Decoder(nn.Module): |
|
def __init__( |
|
self, |
|
out_channels: int, |
|
channels: int, |
|
channels_mult: list[int], |
|
num_res_blocks: int, |
|
attn_resolutions: int, |
|
dropout: float, |
|
resolution: int, |
|
z_channels: int, |
|
spatial_compression: int, |
|
**ignore_kwargs, |
|
): |
|
super().__init__() |
|
self.num_resolutions = len(channels_mult) |
|
self.num_res_blocks = num_res_blocks |
|
|
|
|
|
patch_size = ignore_kwargs.get("patch_size", 1) |
|
self.unpatcher = UnPatcher(patch_size, ignore_kwargs.get("patch_method", "rearrange")) |
|
out_ch = out_channels * patch_size * patch_size |
|
|
|
|
|
self.num_upsamples = int(math.log2(spatial_compression)) - int(math.log2(patch_size)) |
|
assert self.num_upsamples <= self.num_resolutions, f"we can only upsample {self.num_resolutions} times at most" |
|
|
|
block_in = channels * channels_mult[self.num_resolutions - 1] |
|
curr_res = (resolution // patch_size) // 2 ** (self.num_resolutions - 1) |
|
self.z_shape = (1, z_channels, curr_res, curr_res) |
|
logging.info("Working with z of shape {} = {} dimensions.".format(self.z_shape, np.prod(self.z_shape))) |
|
|
|
|
|
self.conv_in = torch.nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1) |
|
|
|
|
|
self.mid = nn.Module() |
|
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, dropout=dropout) |
|
self.mid.attn_1 = AttnBlock(block_in) |
|
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, dropout=dropout) |
|
|
|
|
|
self.up = nn.ModuleList() |
|
for i_level in reversed(range(self.num_resolutions)): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_out = channels * channels_mult[i_level] |
|
for _ in range(self.num_res_blocks + 1): |
|
block.append( |
|
ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_out, |
|
dropout=dropout, |
|
) |
|
) |
|
block_in = block_out |
|
if curr_res in attn_resolutions: |
|
attn.append(AttnBlock(block_in)) |
|
up = nn.Module() |
|
up.block = block |
|
up.attn = attn |
|
if i_level >= (self.num_resolutions - self.num_upsamples): |
|
up.upsample = Upsample(block_in) |
|
curr_res = curr_res * 2 |
|
self.up.insert(0, up) |
|
|
|
|
|
self.norm_out = Normalize(block_in) |
|
self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1) |
|
|
|
def forward(self, z: torch.Tensor) -> torch.Tensor: |
|
h = self.conv_in(z) |
|
|
|
|
|
h = self.mid.block_1(h) |
|
h = self.mid.attn_1(h) |
|
h = self.mid.block_2(h) |
|
|
|
|
|
for i_level in reversed(range(self.num_resolutions)): |
|
for i_block in range(self.num_res_blocks + 1): |
|
h = self.up[i_level].block[i_block](h) |
|
if len(self.up[i_level].attn) > 0: |
|
h = self.up[i_level].attn[i_block](h) |
|
if i_level >= (self.num_resolutions - self.num_upsamples): |
|
h = self.up[i_level].upsample(h) |
|
|
|
h = self.norm_out(h) |
|
h = nonlinearity(h) |
|
h = self.conv_out(h) |
|
h = self.unpatcher(h) |
|
return h |
|
|