harry900000's picture
add cosmos-tranfer1/ into repo
226c7c9
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from megatron.core import parallel_state
from torch.utils.data import DataLoader, DistributedSampler
from cosmos_transfer1.diffusion.config.transfer.conditioner import CTRL_HINT_KEYS
from cosmos_transfer1.diffusion.datasets.example_transfer_dataset import ExampleTransferDataset
from cosmos_transfer1.utils.lazy_config import LazyCall as L
def get_sampler(dataset):
return DistributedSampler(
dataset,
num_replicas=parallel_state.get_data_parallel_world_size(),
rank=parallel_state.get_data_parallel_rank(),
shuffle=True,
seed=0,
)
def get_example_transfer_dataset(hint_key, is_train=True):
dataset = L(ExampleTransferDataset)(
dataset_dir="datasets/hdvila",
num_frames=121,
resolution="720",
hint_key=hint_key,
is_train=is_train,
)
return L(DataLoader)(
dataset=dataset,
sampler=L(get_sampler)(dataset=dataset),
batch_size=1,
drop_last=True,
num_workers=8, # adjust as needed
prefetch_factor=2, # adjust as needed
pin_memory=True,
)
# NOTE 1: For customized post train: add your dataloader registration here.
# NOTE 2: The loop below simply registers a dataset for all hint_keys in CTRL_HINT_KEYS. The actual data might not exist.
def register_data_ctrlnet(cs):
for hint_key in CTRL_HINT_KEYS:
cs.store(
group="data_train",
package="dataloader_train",
name=f"example_transfer_train_data_{hint_key}",
node=get_example_transfer_dataset(hint_key=hint_key, is_train=True),
)
cs.store(
group="data_val",
package="dataloader_val",
name=f"example_transfer_val_data_{hint_key}",
node=get_example_transfer_dataset(hint_key=hint_key, is_train=False),
)