harry900000's picture
add cosmos-tranfer1/ into repo
226c7c9
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, Dict, Optional, Tuple, Type, TypeVar, Union
import torch
from einops import rearrange
from megatron.core import parallel_state
from torch import Tensor
from cosmos_transfer1.diffusion.conditioner import CosmosCondition, DataType, VideoConditionerWithCtrl
from cosmos_transfer1.diffusion.diffusion.modules.res_sampler import COMMON_SOLVER_OPTIONS
from cosmos_transfer1.diffusion.inference.inference_utils import (
merge_patches_into_video,
non_strict_load_model,
split_video_into_patches,
)
from cosmos_transfer1.diffusion.module.parallel import cat_outputs_cp, split_inputs_cp
from cosmos_transfer1.diffusion.training.models.extend_model import ExtendDiffusionModel as ExtendVideoDiffusionModel
from cosmos_transfer1.diffusion.training.models.model import DiffusionModel as VideoDiffusionModel
from cosmos_transfer1.diffusion.training.models.model import _broadcast, broadcast_condition
from cosmos_transfer1.diffusion.training.models.model_image import diffusion_fsdp_class_decorator
from cosmos_transfer1.utils import log, misc
from cosmos_transfer1.utils.lazy_config import instantiate
T = TypeVar("T")
IS_PREPROCESSED_KEY = "is_preprocessed"
def ctrlnet_decorator(base_class: Type[T]) -> Type[T]:
class CtrlNetModel(base_class):
def __init__(self, config, fsdp_checkpointer=None):
if fsdp_checkpointer is not None:
return super().__init__(config, fsdp_checkpointer)
else:
return super().__init__(config)
def build_model(self) -> torch.nn.ModuleDict:
log.info("Start creating base model")
base_model = super().build_model()
# initialize base model
config = self.config
self.load_base_model(base_model)
log.info("Done creating base model")
log.info("Start creating ctrlnet model")
net = instantiate(self.config.net_ctrl)
conditioner = base_model.conditioner
logvar = base_model.logvar
# initialize controlnet encoder
model = torch.nn.ModuleDict({"net": net, "conditioner": conditioner, "logvar": logvar})
model.load_state_dict(base_model.state_dict(), strict=False)
model.base_model = base_model
if not config.finetune_base_model:
model.base_model.requires_grad_(False)
log.critical("Only training ctrlnet model and keeping base model frozen")
else:
log.critical("Also training base model")
log.info("Done creating ctrlnet model")
self.hint_key = self.config.hint_key["hint_key"]
return model
@property
def base_net(self):
return self.model.base_model.net
def on_train_start(self, memory_format: torch.memory_format = torch.preserve_format) -> None:
super().on_train_start(memory_format)
# self.base_model = self.base_model.to(memory_format=memory_format, **self.tensor_kwargs)
self.model = self.model.to(memory_format=memory_format, **self.tensor_kwargs)
if parallel_state.is_initialized() and parallel_state.get_tensor_model_parallel_world_size() > 1:
if parallel_state.sequence_parallel:
self.base_net.enable_sequence_parallel()
if (
hasattr(self.config, "use_torch_compile") and self.config.use_torch_compile
): # compatible with old config
# not tested yet
if torch.__version__ < "2.3":
log.warning(
"torch.compile in Pytorch version older than 2.3 doesn't work well with activation checkpointing.\n"
"It's very likely there will be no significant speedup from torch.compile.\n"
"Please use at least 24.04 Pytorch container, or imaginaire4:v7 container."
)
self.base_net = torch.compile(self.base_net, dynamic=False, disable=not self.config.use_torch_compile)
def load_base_model(self, base_model) -> None:
config = self.config
if config.base_load_from is not None:
checkpoint_path = config.base_load_from["load_path"]
else:
checkpoint_path = ""
if "*" in checkpoint_path:
# there might be better ways to decide if it's a converted tp checkpoint
mp_rank = parallel_state.get_model_parallel_group().rank()
checkpoint_path = checkpoint_path.replace("*", f"{mp_rank}")
if checkpoint_path:
log.info(f"Loading base model checkpoint (local): {checkpoint_path}")
state_dict = torch.load(checkpoint_path, map_location=lambda storage, loc: storage)
log.success(f"Complete loading base model checkpoint (local): {checkpoint_path}")
if state_dict.get("ema") is not None:
# Copy the base model weights from ema model.
log.info("Copying ema to base model")
base_state_dict = {k.replace("-", "."): v for k, v in state_dict["ema"].items()}
elif "model" in state_dict:
# Copy the base model weights from reg model.
log.warning("Using non-EMA base model")
base_state_dict = state_dict["model"]
else:
log.info("Loading from an EMA only model")
base_state_dict = state_dict
try:
base_model.load_state_dict(base_state_dict, strict=False)
except Exception:
log.critical("load model in non-strict mode")
log.critical(non_strict_load_model(base_model, base_state_dict), rank0_only=False)
log.info("Done loading the base model checkpoint.")
return CtrlNetModel
def video_ctrlnet_decorator(base_class: Type[T]) -> Type[T]:
class VideoDiffusionModelWithCtrlWrapper(base_class):
def __init__(self, config):
super().__init__(config)
if hasattr(config, "pixel_corruptor") and config.pixel_corruptor is not None:
self.pixel_corruptor = instantiate(config.pixel_corruptor)
self.pixel_corruptor.to(**self.tensor_kwargs)
else:
self.pixel_corruptor = None
def get_data_and_condition(
self, data_batch: dict[str, Tensor], **kwargs
) -> Tuple[Tensor, VideoConditionerWithCtrl]:
# process the control input
hint_key = self.config.hint_key["hint_key"]
is_image_batch = self.is_image_batch(data_batch)
_data = {hint_key: data_batch[hint_key]}
if IS_PREPROCESSED_KEY in data_batch:
_data[IS_PREPROCESSED_KEY] = data_batch[IS_PREPROCESSED_KEY]
if not is_image_batch:
self._normalize_video_databatch_inplace(_data, input_key=hint_key)
# if it is an image batch, the control input is also image
if self.input_image_key in data_batch:
self._augment_image_dim_inplace(_data, input_key=hint_key)
data_batch[hint_key] = _data[hint_key]
# else:
# raise NotImplementedError(f"{self.config.hint_key} is not implemented.")
data_batch["hint_key"] = hint_key
raw_state, latent_state, condition = super().get_data_and_condition(data_batch, **kwargs)
# if not torch.is_grad_enabled() and all(self.config.hint_mask):
use_multicontrol = (
("control_weight" in data_batch)
and not isinstance(data_batch["control_weight"], float)
and data_batch["control_weight"].shape[0] > 1
)
if use_multicontrol: # encode individual conditions separately
latent_hint = []
num_conditions = data_batch[data_batch["hint_key"]].size(1) // 3
for i in range(num_conditions):
cond_mask = [False] * num_conditions
cond_mask[i] = True
latent_hint += [self.encode_latent(data_batch, cond_mask=cond_mask)]
latent_hint = torch.cat(latent_hint)
else:
latent_hint = self.encode_latent(data_batch)
# copied from model.py
is_image_batch = self.is_image_batch(data_batch)
is_video_batch = not is_image_batch
# VAE has randomness. CP/TP group should have the same encoded output.
latent_hint = _broadcast(latent_hint, to_tp=True, to_cp=is_video_batch)
# add extra conditions
data_batch["latent_hint"] = latent_hint
setattr(condition, hint_key, latent_hint)
setattr(condition, "base_model", self.model.base_model)
return raw_state, latent_state, condition
def encode_latent(self, data_batch: dict, cond_mask: list = []) -> torch.Tensor:
x = data_batch[data_batch["hint_key"]]
if torch.is_grad_enabled() and self.pixel_corruptor is not None:
x = self.pixel_corruptor(x)
latent = []
# control input goes through tokenizer, which always takes 3-input channels
num_conditions = x.size(1) // 3 # input conditions were concatenated along channel dimension
if num_conditions > 1 and self.config.hint_dropout_rate > 0:
if torch.is_grad_enabled(): # during training, randomly dropout some conditions
cond_mask = torch.rand(num_conditions) > self.config.hint_dropout_rate
if not cond_mask.any(): # make sure at least one condition is present
cond_mask[torch.randint(num_conditions, (1,)).item()] = True
elif not cond_mask: # during inference, use hint_mask to indicate which conditions are used
cond_mask = self.config.hint_mask
else:
cond_mask = [True] * num_conditions
for idx in range(0, x.size(1), 3):
x_rgb = x[:, idx : idx + 3]
if self.config.hint_key["grayscale"]:
x_rgb = x_rgb.mean(dim=1, keepdim=True).expand_as(x_rgb)
# if idx == 0:
# x_max = x_rgb
# else:
# x_max = torch.maximum(x_rgb, x_max)
if not cond_mask[idx // 3]: # if the condition is not selected, replace with a black image
x_rgb = torch.zeros_like(x_rgb)
latent.append(self.encode(x_rgb))
# latent.append(self.encode(x_max))
latent = torch.cat(latent, dim=1)
return latent
def compute_loss_with_epsilon_and_sigma(
self,
data_batch: dict[str, Tensor],
x0_from_data_batch: Tensor,
x0: Tensor,
condition: CosmosCondition,
epsilon: Tensor,
sigma: Tensor,
):
if self.is_image_batch(data_batch):
# Turn off CP
self.net.disable_context_parallel()
self.base_net.disable_context_parallel()
else:
if parallel_state.get_context_parallel_world_size() > 1:
# Turn on CP
cp_group = parallel_state.get_context_parallel_group()
self.net.enable_context_parallel(cp_group)
self.base_net.enable_context_parallel(cp_group)
log.debug("[CP] Split hint_input")
hint_key = self.config.hint_key["hint_key"]
x_hint_raw = getattr(condition, hint_key)
x_hint = split_inputs_cp(x=x_hint_raw, seq_dim=2, cp_group=self.net.cp_group)
setattr(condition, hint_key, x_hint)
return super().compute_loss_with_epsilon_and_sigma(
data_batch, x0_from_data_batch, x0, condition, epsilon, sigma
)
def get_x0_fn_from_batch(
self,
data_batch: Dict,
guidance: float = 1.5,
is_negative_prompt: bool = False,
condition_latent: torch.Tensor = None,
num_condition_t: Union[int, None] = None,
condition_video_augment_sigma_in_inference: float = None,
seed_inference: int = 1,
) -> Callable:
"""
Generates a callable function `x0_fn` based on the provided data batch and guidance factor.
This function first processes the input data batch through a conditioning workflow (`conditioner`) to obtain conditioned and unconditioned states. It then defines a nested function `x0_fn` which applies a denoising operation on an input `noise_x` at a given noise level `sigma` using both the conditioned and unconditioned states.
Args:
- data_batch (Dict): A batch of data used for conditioning. The format and content of this dictionary should align with the expectations of the `self.conditioner`
- guidance (float, optional): A scalar value that modulates the influence of the conditioned state relative to the unconditioned state in the output. Defaults to 1.5.
- is_negative_prompt (bool): use negative prompt t5 in uncondition if true
condition_latent (torch.Tensor): latent tensor in shape B,C,T,H,W as condition to generate video.
- num_condition_t (int): number of condition latent T, used in inference to decide the condition region and config.conditioner.video_cond_bool.condition_location == "first_n"
- condition_video_augment_sigma_in_inference (float): sigma for condition video augmentation in inference
Returns:
- Callable: A function `x0_fn(noise_x, sigma)` that takes two arguments, `noise_x` and `sigma`, and return x0 predictoin
The returned function is suitable for use in scenarios where a denoised state is required based on both conditioned and unconditioned inputs, with an adjustable level of guidance influence.
"""
# data_batch should be the one processed by self.get_data_and_condition
if is_negative_prompt:
condition, uncondition = self.conditioner.get_condition_with_negative_prompt(data_batch)
else:
condition, uncondition = self.conditioner.get_condition_uncondition(data_batch)
if hasattr(self, "is_extend_model") and self.is_extend_model:
# Add conditions for long video generation.
if self.is_image_batch(data_batch):
condition.data_type = DataType.IMAGE
uncondition.data_type = DataType.IMAGE
else:
if condition_latent is None:
condition_latent = torch.zeros(data_batch["latent_hint"].shape, **self.tensor_kwargs)
num_condition_t = 0
condition_video_augment_sigma_in_inference = 1000
condition.video_cond_bool = True
condition = self.add_condition_video_indicator_and_video_input_mask(
condition_latent, condition, num_condition_t
)
if self.config.conditioner.video_cond_bool.add_pose_condition:
condition = self.add_condition_pose(data_batch, condition)
uncondition.video_cond_bool = True # Not do cfg on condition frames
uncondition = self.add_condition_video_indicator_and_video_input_mask(
condition_latent, uncondition, num_condition_t
)
if self.config.conditioner.video_cond_bool.add_pose_condition:
uncondition = self.add_condition_pose(data_batch, uncondition)
# Add extra conditions for ctrlnet.
latent_hint = data_batch["latent_hint"]
hint_key = data_batch["hint_key"]
setattr(condition, hint_key, latent_hint)
if "use_none_hint" in data_batch and data_batch["use_none_hint"]:
setattr(uncondition, hint_key, None)
else:
setattr(uncondition, hint_key, latent_hint)
to_cp = self.net.is_context_parallel_enabled
# For inference, check if parallel_state is initialized
if parallel_state.is_initialized() and not self.is_image_batch(data_batch):
condition = broadcast_condition(condition, to_tp=True, to_cp=to_cp)
uncondition = broadcast_condition(uncondition, to_tp=True, to_cp=to_cp)
cp_group = parallel_state.get_context_parallel_group()
latent_hint = getattr(condition, hint_key)
latent_hint = split_inputs_cp(latent_hint, seq_dim=2, cp_group=cp_group)
setattr(condition, hint_key, latent_hint)
if getattr(uncondition, hint_key) is not None:
setattr(uncondition, hint_key, latent_hint)
# else:
# assert not to_cp, "parallel_state is not initialized, context parallel should be turned off."
setattr(condition, "base_model", self.model.base_model)
setattr(uncondition, "base_model", self.model.base_model)
def x0_fn(noise_x: torch.Tensor, sigma: torch.Tensor) -> torch.Tensor:
if self.is_image_batch(data_batch) or not issubclass(base_class, ExtendVideoDiffusionModel):
cond_x0 = self.denoise(noise_x, sigma, condition).x0
uncond_x0 = self.denoise(noise_x, sigma, uncondition).x0
else:
cond_x0 = self.denoise(
noise_x,
sigma,
condition,
condition_video_augment_sigma_in_inference=condition_video_augment_sigma_in_inference,
seed_inference=seed_inference,
).x0_pred_replaced
uncond_x0 = self.denoise(
noise_x,
sigma,
uncondition,
condition_video_augment_sigma_in_inference=condition_video_augment_sigma_in_inference,
seed_inference=seed_inference,
).x0_pred_replaced
return cond_x0 + guidance * (cond_x0 - uncond_x0)
return x0_fn
def generate_samples_from_batch(
self,
data_batch: Dict,
guidance: float = 1.5,
seed: int = 1,
state_shape: Tuple | None = None,
n_sample: int | None = None,
is_negative_prompt: bool = False,
num_steps: int = 35,
condition_latent: Union[torch.Tensor, None] = None,
num_condition_t: Union[int, None] = None,
condition_video_augment_sigma_in_inference: float = None,
solver_option: COMMON_SOLVER_OPTIONS = "2ab",
x_sigma_max: Optional[torch.Tensor] = None,
sigma_max: float | None = None,
return_noise: bool = False,
) -> Tensor:
"""
Generate samples from the batch. Based on given batch, it will automatically determine whether to generate image or video samples.
Different from the base model, this function support condition latent as input, it will create a differnt x0_fn if condition latent is given.
If this feature is stablized, we could consider to move this function to the base model.
Args:
condition_latent (Optional[torch.Tensor]): latent tensor in shape B,C,T,H,W as condition to generate video.
num_condition_t (Optional[int]): number of condition latent T, if None, will use the whole first half
return_noise (bool): return the initial noise or not, used for ODE pairs generation. Not used here. Kept for conmpatibility.
"""
self._normalize_video_databatch_inplace(data_batch)
self._augment_image_dim_inplace(data_batch)
is_image_batch = self.is_image_batch(data_batch)
if is_image_batch:
log.debug("image batch, call base model generate_samples_from_batch")
return super().generate_samples_from_batch(
data_batch,
guidance=guidance,
seed=seed,
state_shape=state_shape,
n_sample=n_sample,
is_negative_prompt=is_negative_prompt,
num_steps=num_steps,
)
if n_sample is None:
input_key = self.input_image_key if is_image_batch else self.input_data_key
n_sample = data_batch[input_key].shape[0]
if state_shape is None:
if is_image_batch:
state_shape = (self.state_shape[0], 1, *self.state_shape[2:]) # C,T,H,W
else:
log.debug(f"Default Video state shape is used. {self.state_shape}")
state_shape = self.state_shape
# assert condition_latent is not None, "condition_latent should be provided"
# if self.net.is_context_parallel_enabled:
# data_batch["latent_hint"] = split_inputs_cp(x=data_batch["latent_hint"], seq_dim=2, cp_group=self.net.cp_group)
x0_fn = self.get_x0_fn_from_batch(
data_batch,
guidance,
is_negative_prompt=is_negative_prompt,
condition_latent=condition_latent,
num_condition_t=num_condition_t,
condition_video_augment_sigma_in_inference=condition_video_augment_sigma_in_inference,
seed_inference=seed,
)
if sigma_max is None:
sigma_max = self.sde.sigma_max
if x_sigma_max is None:
x_sigma_max = (
misc.arch_invariant_rand(
(n_sample,) + tuple(state_shape),
torch.float32,
self.tensor_kwargs["device"],
seed,
)
* sigma_max
)
if self.net.is_context_parallel_enabled:
x_sigma_max = _broadcast(x_sigma_max, to_tp=True, to_cp=True)
x_sigma_max = split_inputs_cp(x=x_sigma_max, seq_dim=2, cp_group=self.net.cp_group)
samples = self.sampler(
x0_fn, x_sigma_max, num_steps=num_steps, sigma_max=sigma_max, solver_option=solver_option
)
if self.net.is_context_parallel_enabled:
samples = cat_outputs_cp(samples, seq_dim=2, cp_group=self.net.cp_group)
return samples
def get_patch_based_x0_fn(
self,
data_batch: Dict,
guidance: float = 1.5,
is_negative_prompt: bool = False,
condition_latent: torch.Tensor = None,
num_condition_t: Union[int, None] = None,
condition_video_augment_sigma_in_inference: float = None,
target_h: int = 2112,
target_w: int = 3840,
patch_h: int = 704,
patch_w: int = 1280,
seed_inference: int = 1,
) -> Callable:
"""
Generates a callable function `x0_fn` based on the provided data batch and guidance factor.
The function will split the input into patches, run inference on each patch, then stitch them together.
Additional args to original function:
target_h (int): final stitched video height
target_w (int): final stitched video width
patch_h (int): video patch height for each network inference
patch_w (int): video patch width for each network inference
Returns:
- Callable: A function `x0_fn(noise_x, sigma)` that takes two arguments, `noise_x` and `sigma`, and return x0 prediction
"""
assert patch_h <= target_h and patch_w <= target_w
# data_batch should be the one processed by self.get_data_and_condition
if is_negative_prompt:
condition, uncondition = self.conditioner.get_condition_with_negative_prompt(data_batch)
else:
condition, uncondition = self.conditioner.get_condition_uncondition(data_batch)
if hasattr(self, "is_extend_model") and self.is_extend_model:
# Add conditions for long video generation.
if condition_latent is None:
condition_latent = torch.zeros(data_batch["latent_hint"].shape, **self.tensor_kwargs)
num_condition_t = 0
condition_video_augment_sigma_in_inference = 1000
condition.video_cond_bool = True
condition = self.add_condition_video_indicator_and_video_input_mask(
condition_latent[:1], condition, num_condition_t
)
uncondition.video_cond_bool = True # Not do cfg on condition frames
uncondition = self.add_condition_video_indicator_and_video_input_mask(
condition_latent[:1], uncondition, num_condition_t
)
# Add extra conditions for ctrlnet.
latent_hint = data_batch["latent_hint"]
hint_key = data_batch["hint_key"]
setattr(condition, hint_key, latent_hint)
if "use_none_hint" in data_batch and data_batch["use_none_hint"]:
setattr(uncondition, hint_key, None)
else:
setattr(uncondition, hint_key, latent_hint)
# Handle regional prompting information
if "regional_contexts" in data_batch:
setattr(condition, "regional_contexts", data_batch["regional_contexts"])
# For unconditioned generation, we still need the region masks but not the regional contexts
setattr(uncondition, "regional_contexts", None) # No regional contexts for unconditioned generation
original_region_masks = None
if "region_masks" in data_batch:
original_region_masks = data_batch["region_masks"]
setattr(condition, "region_masks", data_batch["region_masks"])
# For unconditioned generation, we still need the region masks but not the regional contexts
setattr(uncondition, "region_masks", data_batch["region_masks"])
to_cp = self.net.is_context_parallel_enabled
# For inference, check if parallel_state is initialized
if parallel_state.is_initialized() and not self.is_image_batch(data_batch):
condition = broadcast_condition(condition, to_tp=True, to_cp=to_cp)
uncondition = broadcast_condition(uncondition, to_tp=True, to_cp=to_cp)
cp_group = parallel_state.get_context_parallel_group()
latent_hint = getattr(condition, hint_key)
latent_hint = split_inputs_cp(latent_hint, seq_dim=2, cp_group=cp_group)
if hasattr(condition, "regional_contexts") and getattr(condition, "regional_contexts") is not None:
regional_contexts = getattr(condition, "regional_contexts")
regional_contexts = split_inputs_cp(regional_contexts, seq_dim=2, cp_group=cp_group)
setattr(condition, "regional_contexts", regional_contexts)
if hasattr(condition, "region_masks") and getattr(condition, "region_masks") is not None:
region_masks = getattr(condition, "region_masks")
region_masks = split_inputs_cp(region_masks, seq_dim=2, cp_group=cp_group)
setattr(condition, "region_masks", region_masks)
setattr(condition, "base_model", self.model.base_model)
setattr(uncondition, "base_model", self.model.base_model)
if hasattr(self, "hint_encoders"):
self.model.net.hint_encoders = self.hint_encoders
def x0_fn(noise_x: torch.Tensor, sigma: torch.Tensor):
w, h = target_w, target_h
n_img_w = (w - 1) // patch_w + 1
n_img_h = (h - 1) // patch_h + 1
overlap_size_w = overlap_size_h = 0
if n_img_w > 1:
overlap_size_w = (n_img_w * patch_w - w) // (n_img_w - 1)
assert n_img_w * patch_w - overlap_size_w * (n_img_w - 1) == w
if n_img_h > 1:
overlap_size_h = (n_img_h * patch_h - h) // (n_img_h - 1)
assert n_img_h * patch_h - overlap_size_h * (n_img_h - 1) == h
batch_images = noise_x
batch_sigma = sigma
output = []
for idx, cur_images in enumerate(batch_images):
noise_x = cur_images.unsqueeze(0)
sigma = batch_sigma[idx : idx + 1]
condition.gt_latent = condition_latent[idx : idx + 1]
uncondition.gt_latent = condition_latent[idx : idx + 1]
setattr(condition, hint_key, latent_hint[idx : idx + 1])
if getattr(uncondition, hint_key) is not None:
setattr(uncondition, hint_key, latent_hint[idx : idx + 1])
if self.is_image_batch(data_batch) or not issubclass(base_class, ExtendVideoDiffusionModel):
cond_x0 = self.denoise(noise_x, sigma, condition).x0
uncond_x0 = self.denoise(noise_x, sigma, uncondition).x0
else:
cond_x0 = self.denoise(
noise_x,
sigma,
condition,
condition_video_augment_sigma_in_inference=condition_video_augment_sigma_in_inference,
seed_inference=seed_inference,
).x0_pred_replaced
uncond_x0 = self.denoise(
noise_x,
sigma,
uncondition,
condition_video_augment_sigma_in_inference=condition_video_augment_sigma_in_inference,
seed_inference=seed_inference,
).x0_pred_replaced
x0 = cond_x0 + guidance * (cond_x0 - uncond_x0)
output.append(x0)
output = rearrange(torch.stack(output), "(n t) b ... -> (b n t) ...", n=n_img_h, t=n_img_w) # 8x3xhxw
final_output = merge_patches_into_video(output, overlap_size_h, overlap_size_w, n_img_h, n_img_w)
final_output = split_video_into_patches(final_output, patch_h, patch_w)
return final_output
return x0_fn
def generate_samples_from_patches(
self,
data_batch: Dict,
guidance: float = 1.5,
seed: int = 1,
state_shape: Tuple | None = None,
n_sample: int | None = None,
is_negative_prompt: bool = False,
num_steps: int = 35,
condition_latent: Union[torch.Tensor, None] = None,
num_condition_t: Union[int, None] = None,
condition_video_augment_sigma_in_inference: float = None,
solver_option: COMMON_SOLVER_OPTIONS = "2ab",
x_sigma_max: Optional[torch.Tensor] = None,
sigma_max: float | None = None,
target_h: int = 2112,
target_w: int = 3840,
patch_h: int = 704,
patch_w: int = 1280,
) -> Tensor:
"""
Generate samples from the batch using patch-based inference. During each denoising step, it will denoise each patch
separately then average the overlapping regions.
Additional args to original function:
target_h (int): final stitched video height
target_w (int): final stitched video width
patch_h (int): video patch height for each network inference
patch_w (int): video patch width for each network inference
"""
assert patch_h <= target_h and patch_w <= target_w
self._normalize_video_databatch_inplace(data_batch)
self._augment_image_dim_inplace(data_batch)
is_image_batch = self.is_image_batch(data_batch)
if is_image_batch:
log.debug("image batch, call base model generate_samples_from_batch")
return super().generate_samples_from_batch(
data_batch,
guidance=guidance,
seed=seed,
state_shape=state_shape,
n_sample=n_sample,
is_negative_prompt=is_negative_prompt,
num_steps=num_steps,
)
if n_sample is None:
input_key = self.input_image_key if is_image_batch else self.input_data_key
n_sample = data_batch[input_key].shape[0]
if state_shape is None:
if is_image_batch:
state_shape = (self.state_shape[0], 1, *self.state_shape[2:]) # C,T,H,W
else:
log.debug(f"Default Video state shape is used. {self.state_shape}")
state_shape = self.state_shape
x0_fn = self.get_patch_based_x0_fn(
data_batch,
guidance,
is_negative_prompt=is_negative_prompt,
condition_latent=condition_latent,
num_condition_t=num_condition_t,
condition_video_augment_sigma_in_inference=condition_video_augment_sigma_in_inference,
target_h=target_h,
target_w=target_w,
patch_h=patch_h,
patch_w=patch_w,
seed_inference=seed,
)
if sigma_max is None:
sigma_max = self.sde.sigma_max
if x_sigma_max is None:
x_sigma_max = (
misc.arch_invariant_rand(
(n_sample,) + tuple(state_shape),
torch.float32,
self.tensor_kwargs["device"],
seed,
)
* sigma_max
)
if self.net.is_context_parallel_enabled:
x_sigma_max = _broadcast(x_sigma_max, to_tp=True, to_cp=True)
x_sigma_max = split_inputs_cp(x=x_sigma_max, seq_dim=2, cp_group=self.net.cp_group)
samples = self.sampler(
x0_fn, x_sigma_max, num_steps=num_steps, sigma_max=sigma_max, solver_option=solver_option
)
if self.net.is_context_parallel_enabled:
samples = cat_outputs_cp(samples, seq_dim=2, cp_group=self.net.cp_group)
return samples
@torch.no_grad()
def validation_step(
self, data: dict[str, torch.Tensor], iteration: int
) -> tuple[dict[str, torch.Tensor], torch.Tensor]:
"""
save generated videos
"""
raw_data, x0, condition = self.get_data_and_condition(data)
guidance = data["guidance"]
sigma_max = data["sigma_max"]
is_negative_prompt = data["is_negative_prompt"]
data = misc.to(data, **self.tensor_kwargs)
x_sigma_max = None
if sigma_max is not None:
x_sigma_max = self.get_x_from_clean(x0, sigma_max)
sample = self.generate_samples_from_batch(
data,
guidance=guidance,
# make sure no mismatch and also works for cp
state_shape=x0.shape[1:],
n_sample=x0.shape[0],
x_sigma_max=x_sigma_max,
sigma_max=sigma_max,
is_negative_prompt=is_negative_prompt,
)
sample = self.decode(sample)
gt = raw_data
hint = data[data["hint_key"]][:, :3]
result = torch.cat([hint, sample], dim=3)
gt = torch.cat([hint, gt], dim=3)
caption = data["ai_caption"]
return {"gt": gt, "result": result, "caption": caption}, torch.tensor([0]).to(**self.tensor_kwargs)
return VideoDiffusionModelWithCtrlWrapper
@video_ctrlnet_decorator
@ctrlnet_decorator
class VideoDiffusionModelWithCtrl(ExtendVideoDiffusionModel):
pass
@diffusion_fsdp_class_decorator
@video_ctrlnet_decorator
@ctrlnet_decorator
class VideoDiffusionFSDPModelWithCtrl(ExtendVideoDiffusionModel):
pass
@video_ctrlnet_decorator
@ctrlnet_decorator
class ShortVideoDiffusionModelWithCtrl(VideoDiffusionModel):
pass
@diffusion_fsdp_class_decorator
@video_ctrlnet_decorator
@ctrlnet_decorator
class ShortVideoDiffusionFSDPModelWithCtrl(VideoDiffusionModel):
pass