|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import Optional |
|
|
|
import torch |
|
from einops import rearrange, repeat |
|
from einops.layers.torch import Rearrange |
|
from megatron.core import parallel_state |
|
from torch import nn |
|
from transformer_engine.pytorch.attention.rope import apply_rotary_pos_emb |
|
|
|
from cosmos_transfer1.diffusion.training.modules.attention import Attention, GPT2FeedForward |
|
from cosmos_transfer1.diffusion.training.tensor_parallel import gather_along_first_dim |
|
from cosmos_transfer1.utils import log |
|
|
|
|
|
class SDXLTimesteps(nn.Module): |
|
def __init__(self, num_channels: int = 320): |
|
super().__init__() |
|
self.num_channels = num_channels |
|
|
|
def forward(self, timesteps): |
|
in_dype = timesteps.dtype |
|
half_dim = self.num_channels // 2 |
|
exponent = -math.log(10000) * torch.arange(half_dim, dtype=torch.float32, device=timesteps.device) |
|
exponent = exponent / (half_dim - 0.0) |
|
|
|
emb = torch.exp(exponent) |
|
emb = timesteps[:, None].float() * emb[None, :] |
|
|
|
sin_emb = torch.sin(emb) |
|
cos_emb = torch.cos(emb) |
|
emb = torch.cat([cos_emb, sin_emb], dim=-1) |
|
|
|
return emb.to(in_dype) |
|
|
|
|
|
class SDXLTimestepEmbedding(nn.Module): |
|
def __init__(self, in_features: int, out_features: int, use_adaln_lora: bool = False): |
|
super().__init__() |
|
log.critical( |
|
f"Using AdaLN LoRA Flag: {use_adaln_lora}. We enable bias if no AdaLN LoRA for backward compatibility." |
|
) |
|
self.linear_1 = nn.Linear(in_features, out_features, bias=not use_adaln_lora) |
|
self.activation = nn.SiLU() |
|
self.use_adaln_lora = use_adaln_lora |
|
if use_adaln_lora: |
|
self.linear_2 = nn.Linear(out_features, 3 * out_features, bias=False) |
|
else: |
|
self.linear_2 = nn.Linear(out_features, out_features, bias=True) |
|
|
|
def forward(self, sample: torch.Tensor) -> torch.Tensor: |
|
emb = self.linear_1(sample) |
|
emb = self.activation(emb) |
|
emb = self.linear_2(emb) |
|
|
|
if self.use_adaln_lora: |
|
adaln_lora_B_3D = emb |
|
emb_B_D = sample |
|
else: |
|
emb_B_D = emb |
|
adaln_lora_B_3D = None |
|
|
|
return emb_B_D, adaln_lora_B_3D |
|
|
|
|
|
def modulate(x, shift, scale): |
|
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
""" |
|
PatchEmbed is a module for embedding patches from an input tensor by applying either 3D or 2D convolutional layers, |
|
depending on the . This module can process inputs with temporal (video) and spatial (image) dimensions, |
|
making it suitable for video and image processing tasks. It supports dividing the input into patches and embedding each |
|
patch into a vector of size `out_channels`. |
|
|
|
Parameters: |
|
- spatial_patch_size (int): The size of each spatial patch. |
|
- temporal_patch_size (int): The size of each temporal patch. |
|
- in_channels (int): Number of input channels. Default: 3. |
|
- out_channels (int): The dimension of the embedding vector for each patch. Default: 768. |
|
- bias (bool): If True, adds a learnable bias to the output of the convolutional layers. Default: True. |
|
- keep_spatio (bool): If True, the spatial dimensions are kept separate in the output tensor, otherwise, they are flattened. Default: False. |
|
- legacy_patch_emb (bool): If True, applies 3D convolutional layers for video inputs, otherwise, use Linear! The legacy model is for backward compatibility. Default: True. |
|
The output shape of the module depends on the `keep_spatio` flag. If `keep_spatio`=True, the output retains the spatial dimensions. |
|
Otherwise, the spatial dimensions are flattened into a single dimension. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
spatial_patch_size, |
|
temporal_patch_size, |
|
in_channels=3, |
|
out_channels=768, |
|
bias=True, |
|
keep_spatio=False, |
|
legacy_patch_emb: bool = True, |
|
): |
|
super().__init__() |
|
self.spatial_patch_size = spatial_patch_size |
|
self.temporal_patch_size = temporal_patch_size |
|
assert keep_spatio, "Only support keep_spatio=True" |
|
self.keep_spatio = keep_spatio |
|
self.legacy_patch_emb = legacy_patch_emb |
|
|
|
if legacy_patch_emb: |
|
self.proj = nn.Conv3d( |
|
in_channels, |
|
out_channels, |
|
kernel_size=(temporal_patch_size, spatial_patch_size, spatial_patch_size), |
|
stride=(temporal_patch_size, spatial_patch_size, spatial_patch_size), |
|
bias=bias, |
|
) |
|
self.out = Rearrange("b c t h w -> b t h w c") |
|
else: |
|
self.proj = nn.Sequential( |
|
Rearrange( |
|
"b c (t r) (h m) (w n) -> b t h w (c r m n)", |
|
r=temporal_patch_size, |
|
m=spatial_patch_size, |
|
n=spatial_patch_size, |
|
), |
|
nn.Linear( |
|
in_channels * spatial_patch_size * spatial_patch_size * temporal_patch_size, out_channels, bias=bias |
|
), |
|
) |
|
self.out = nn.Identity() |
|
|
|
def forward(self, x): |
|
""" |
|
Forward pass of the PatchEmbed module. |
|
|
|
Parameters: |
|
- x (torch.Tensor): The input tensor of shape (B, C, T, H, W) where |
|
B is the batch size, |
|
C is the number of channels, |
|
T is the temporal dimension, |
|
H is the height, and |
|
W is the width of the input. |
|
|
|
Returns: |
|
- torch.Tensor: The embedded patches as a tensor, with shape b t h w c. |
|
""" |
|
assert x.dim() == 5 |
|
_, _, T, H, W = x.shape |
|
assert H % self.spatial_patch_size == 0 and W % self.spatial_patch_size == 0 |
|
assert T % self.temporal_patch_size == 0 |
|
x = self.proj(x) |
|
return self.out(x) |
|
|
|
|
|
class ExtraTokenPatchEmbed(PatchEmbed): |
|
def __init__(self, *args, out_channels: int = 768, keep_spatio: bool = False, **kwargs): |
|
assert keep_spatio, "ExtraTokenPatchEmbed only supports keep_spatio=True" |
|
super().__init__(*args, out_channels=out_channels, keep_spatio=keep_spatio, **kwargs) |
|
self.temporal_token = nn.Parameter(torch.randn(1, 1, 1, 1, out_channels)) |
|
self.spatial_token = nn.Parameter(torch.randn(1, 1, 1, 1, out_channels)) |
|
|
|
def forward(self, x): |
|
x_B_T_H_W_C = super().forward(x) |
|
B, T, H, W, C = x_B_T_H_W_C.shape |
|
x_B_T_H_W_C = torch.cat( |
|
[ |
|
x_B_T_H_W_C, |
|
self.temporal_token.repeat(B, 1, H, W, 1), |
|
], |
|
dim=1, |
|
) |
|
x_B_T_H_W_C = torch.cat( |
|
[ |
|
x_B_T_H_W_C, |
|
self.spatial_token.repeat(B, T, H, 1, 1), |
|
], |
|
dim=3, |
|
) |
|
return x_B_T_H_W_C |
|
|
|
|
|
class ExpertChoiceMoEGate(nn.Module): |
|
""" |
|
ExpertChoiceMoEGate determines which tokens go |
|
to which experts (and how much to weigh each expert). |
|
|
|
Args: |
|
hidden_size (int): Dimensionality of input features. |
|
num_experts (int): Number of experts (E). |
|
capacity (int): Capacity (number of tokens) each expert can process (C). |
|
""" |
|
|
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
num_experts: int, |
|
capacity: int, |
|
): |
|
super().__init__() |
|
self.hidden_size = hidden_size |
|
self.num_experts = num_experts |
|
self.capacity = capacity |
|
|
|
self.router = nn.Parameter(torch.empty((self.num_experts, self.hidden_size))) |
|
self.reset_parameters() |
|
|
|
def reset_parameters(self): |
|
torch.nn.init.kaiming_uniform_(self.router) |
|
|
|
def forward(self, x: torch.Tensor): |
|
""" |
|
Args: |
|
x (Tensor): Input of shape (B, S, D) |
|
Returns: |
|
gating (Tensor): Gating weights of shape (B, E, C), |
|
where E = num_experts, C = capacity (top-k). |
|
dispatch (Tensor): Dispatch mask of shape (B, E, C, S). |
|
index (Tensor): Indices of top-k tokens for each expert, |
|
shape (B, E, C). |
|
""" |
|
B, S, D = x.shape |
|
E, C = self.num_experts, self.capacity |
|
|
|
|
|
logits = torch.einsum("bsd,de->bse", x, self.router) |
|
affinity = torch.nn.functional.softmax(logits, dim=-1) |
|
|
|
|
|
affinity_t = affinity.transpose(1, 2) |
|
|
|
|
|
gating, index = torch.topk(affinity_t, k=C, dim=-1) |
|
|
|
|
|
dispatch = torch.nn.functional.one_hot(index, num_classes=S).float() |
|
|
|
return gating, dispatch, index |
|
|
|
|
|
class ExpertChoiceMoELayer(nn.Module): |
|
""" |
|
ExpertChoiceMoELayer uses the ExpertChoiceMoEGate to route tokens |
|
to experts, process them, and then combine the outputs. |
|
|
|
Args: |
|
gate_hidden_size (int): Dimensionality of input features. |
|
ffn_hidden_size (int): Dimension of hidden layer in each expert feedforward (e.g., GPT2FeedForward). |
|
num_experts (int): Number of experts (E). |
|
capacity (int): Capacity (number of tokens) each expert can process (C). |
|
expert_cls (nn.Module): The class to instantiate each expert. Defaults to GPT2FeedForward. |
|
expert_kwargs (dict): Extra kwargs to pass to each expert class. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
gate_hidden_size: int, |
|
ffn_hidden_size: int, |
|
num_experts: int, |
|
capacity: int, |
|
expert_class: nn.Module = GPT2FeedForward, |
|
expert_kwargs=None, |
|
): |
|
super().__init__() |
|
if not expert_kwargs: |
|
expert_kwargs = {} |
|
|
|
self.gate_hidden_size = gate_hidden_size |
|
self.ffn_hidden_size = ffn_hidden_size |
|
self.num_experts = num_experts |
|
self.capacity = capacity |
|
|
|
self.gate = ExpertChoiceMoEGate(gate_hidden_size, num_experts, capacity) |
|
|
|
self.experts = nn.ModuleList( |
|
[expert_class(gate_hidden_size, ffn_hidden_size, **expert_kwargs) for _ in range(num_experts)] |
|
) |
|
|
|
def forward(self, x: torch.Tensor): |
|
""" |
|
Args: |
|
x (Tensor): Input of shape (B, S, D). |
|
|
|
Returns: |
|
x_out (Tensor): Output of shape (B, S, D), after dispatching tokens |
|
to experts and combining their outputs. |
|
""" |
|
B, S, D = x.shape |
|
E, C = self.num_experts, self.capacity |
|
|
|
|
|
|
|
gating, dispatch, index = self.gate(x) |
|
|
|
|
|
x_in = torch.einsum("becs,bsd->becd", dispatch, x) |
|
|
|
|
|
expert_outputs = [self.experts[e](x_in[:, e]) for e in range(E)] |
|
|
|
x_e = torch.stack(expert_outputs, dim=1) |
|
|
|
|
|
|
|
|
|
x_out = torch.einsum("becs,bec,becd->bsd", dispatch, gating, x_e) |
|
|
|
return x_out |
|
|
|
|
|
class FinalLayer(nn.Module): |
|
""" |
|
The final layer of video DiT. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
hidden_size, |
|
spatial_patch_size, |
|
temporal_patch_size, |
|
out_channels, |
|
use_adaln_lora: bool = False, |
|
adaln_lora_dim: int = 256, |
|
): |
|
super().__init__() |
|
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.linear = nn.Linear( |
|
hidden_size, spatial_patch_size * spatial_patch_size * temporal_patch_size * out_channels, bias=False |
|
) |
|
self.hidden_size = hidden_size |
|
self.n_adaln_chunks = 2 |
|
self.use_adaln_lora = use_adaln_lora |
|
if use_adaln_lora: |
|
self.adaLN_modulation = nn.Sequential( |
|
nn.SiLU(), |
|
nn.Linear(hidden_size, adaln_lora_dim, bias=False), |
|
nn.Linear(adaln_lora_dim, self.n_adaln_chunks * hidden_size, bias=False), |
|
) |
|
else: |
|
self.adaLN_modulation = nn.Sequential( |
|
nn.SiLU(), nn.Linear(hidden_size, self.n_adaln_chunks * hidden_size, bias=False) |
|
) |
|
|
|
self.sequence_parallel = getattr(parallel_state, "sequence_parallel", False) |
|
|
|
def forward( |
|
self, |
|
x_BT_HW_D, |
|
emb_B_D, |
|
adaln_lora_B_3D: Optional[torch.Tensor] = None, |
|
): |
|
if self.use_adaln_lora: |
|
assert adaln_lora_B_3D is not None |
|
shift_B_D, scale_B_D = (self.adaLN_modulation(emb_B_D) + adaln_lora_B_3D[:, : 2 * self.hidden_size]).chunk( |
|
2, dim=1 |
|
) |
|
else: |
|
shift_B_D, scale_B_D = self.adaLN_modulation(emb_B_D).chunk(2, dim=1) |
|
|
|
B = emb_B_D.shape[0] |
|
T = x_BT_HW_D.shape[0] // B |
|
shift_BT_D, scale_BT_D = repeat(shift_B_D, "b d -> (b t) d", t=T), repeat(scale_B_D, "b d -> (b t) d", t=T) |
|
x_BT_HW_D = modulate(self.norm_final(x_BT_HW_D), shift_BT_D, scale_BT_D) |
|
if self.sequence_parallel: |
|
x_T_B_HW_D = rearrange(x_BT_HW_D, "(b t) hw d -> t b hw d", b=B, t=T) |
|
x_T_B_HW_D = gather_along_first_dim(x_T_B_HW_D, parallel_state.get_tensor_model_parallel_group()) |
|
x_BT_HW_D = rearrange(x_T_B_HW_D, "t b hw d -> (b t) hw d", b=B) |
|
|
|
x_BT_HW_D = self.linear(x_BT_HW_D) |
|
return x_BT_HW_D |
|
|
|
def forward_with_memory_save( |
|
self, |
|
x_BT_HW_D_before_gate: torch.Tensor, |
|
x_BT_HW_D_skip: torch.Tensor, |
|
gate_L_B_D: torch.Tensor, |
|
emb_B_D, |
|
adaln_lora_B_3D: Optional[torch.Tensor] = None, |
|
): |
|
if self.use_adaln_lora: |
|
assert adaln_lora_B_3D is not None |
|
shift_B_D, scale_B_D = (self.adaLN_modulation(emb_B_D) + adaln_lora_B_3D[:, : 2 * self.hidden_size]).chunk( |
|
2, dim=1 |
|
) |
|
else: |
|
shift_B_D, scale_B_D = self.adaLN_modulation(emb_B_D).chunk(2, dim=1) |
|
|
|
B = emb_B_D.shape[0] |
|
T = x_BT_HW_D_before_gate.shape[0] // B |
|
shift_BT_D, scale_BT_D = repeat(shift_B_D, "b d -> (b t) d", t=T), repeat(scale_B_D, "b d -> (b t) d", t=T) |
|
gate_BT_1_D = repeat(gate_L_B_D, "1 b d -> (b t) 1 d", t=T) |
|
|
|
def _fn(_x_before_gate, _x_skip): |
|
previous_block_out = _x_skip + gate_BT_1_D * _x_before_gate |
|
_x = modulate(self.norm_final(previous_block_out), shift_BT_D, scale_BT_D) |
|
return self.linear(_x) |
|
|
|
return torch.utils.checkpoint.checkpoint(_fn, x_BT_HW_D_before_gate, x_BT_HW_D_skip, use_reentrant=False) |
|
|
|
|
|
class VideoAttn(nn.Module): |
|
""" |
|
Implements video attention with optional cross-attention capabilities. |
|
|
|
This module supports both self-attention within the video frames and cross-attention |
|
with an external context. It's designed to work with flattened spatial dimensions |
|
to accommodate for video input. |
|
|
|
Attributes: |
|
x_dim (int): Dimensionality of the input feature vectors. |
|
context_dim (Optional[int]): Dimensionality of the external context features. |
|
If None, the attention does not utilize external context. |
|
num_heads (int): Number of attention heads. |
|
bias (bool): If true, bias is added to the query, key, value projections. |
|
x_format (str): The shape format of x tenosor. |
|
n_views (int): Extra parameter used in multi-view diffusion model. It indicated total number of view we model together. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
x_dim: int, |
|
context_dim: Optional[int], |
|
num_heads: int, |
|
bias: bool = False, |
|
x_format: str = "BTHWD", |
|
n_views: int = 1, |
|
) -> None: |
|
super().__init__() |
|
self.n_views = n_views |
|
self.x_format = x_format |
|
if self.x_format == "BTHWD": |
|
qkv_format = "bshd" |
|
elif self.x_format == "THWBD": |
|
qkv_format = "sbhd" |
|
else: |
|
raise NotImplementedError(f"Unsupported x_format: {self.x_format}") |
|
|
|
self.attn = Attention( |
|
x_dim, |
|
context_dim, |
|
num_heads, |
|
x_dim // num_heads, |
|
qkv_bias=bias, |
|
qkv_norm="RRI", |
|
out_bias=bias, |
|
qkv_format=qkv_format, |
|
) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
context: Optional[torch.Tensor] = None, |
|
crossattn_mask: Optional[torch.Tensor] = None, |
|
rope_emb_L_1_1_D: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
""" |
|
Forward pass for video attention. |
|
|
|
Args: |
|
x (Tensor): Input tensor of shape (B, T, H, W, D) or (T, H, W, B, D) representing batches of video data. |
|
context (Tensor): Context tensor of shape (B, M, D) or (M, B, D), where M is the sequence length of the context. |
|
crossattn_mask (Optional[Tensor]): An optional mask for cross-attention mechanisms. |
|
rope_emb_L_1_1_D (Optional[Tensor]): Rotary positional embedding tensor of shape (L, 1, 1, D). L == THW for current video training. transformer_engine format |
|
|
|
Returns: |
|
Tensor: The output tensor with applied attention, maintaining the input shape. |
|
""" |
|
|
|
if self.x_format == "BTHWD": |
|
if context is not None and self.n_views > 1: |
|
x_B_T_H_W_D = rearrange(x, "b (v t) h w d -> (v b) t h w d", v=self.n_views) |
|
context_B_M_D = rearrange(context, "b (v m) d -> (v b) m d", v=self.n_views) |
|
else: |
|
x_B_T_H_W_D = x |
|
context_B_M_D = context |
|
B, T, H, W, D = x_B_T_H_W_D.shape |
|
x_B_THW_D = rearrange(x_B_T_H_W_D, "b t h w d -> b (t h w) d") |
|
x_B_THW_D = self.attn(x_B_THW_D, context_B_M_D, crossattn_mask, rope_emb=rope_emb_L_1_1_D) |
|
|
|
|
|
x_B_T_H_W_D = rearrange(x_B_THW_D, "b (t h w) d -> b t h w d", h=H, w=W) |
|
if context is not None and self.n_views > 1: |
|
x_B_T_H_W_D = rearrange(x_B_T_H_W_D, "(v b) t h w d -> b (v t) h w d", v=self.n_views) |
|
return x_B_T_H_W_D |
|
elif self.x_format == "THWBD": |
|
if context is not None and self.n_views > 1: |
|
x_T_H_W_B_D = rearrange(x, "(v t) h w b d -> t h w (v b) d", v=self.n_views) |
|
context_M_B_D = rearrange(context, "(v m) b d -> m (v b) d", v=self.n_views) |
|
else: |
|
x_T_H_W_B_D = x |
|
context_M_B_D = context |
|
T, H, W, B, D = x_T_H_W_B_D.shape |
|
x_THW_B_D = rearrange(x_T_H_W_B_D, "t h w b d -> (t h w) b d") |
|
x_THW_B_D = self.attn( |
|
x_THW_B_D, |
|
context_M_B_D, |
|
crossattn_mask, |
|
rope_emb=rope_emb_L_1_1_D, |
|
) |
|
x_T_H_W_B_D = rearrange(x_THW_B_D, "(t h w) b d -> t h w b d", h=H, w=W) |
|
if context is not None and self.n_views > 1: |
|
x_T_H_W_B_D = rearrange(x_T_H_W_B_D, "t h w (v b) d -> (v t) h w b d", v=self.n_views) |
|
return x_T_H_W_B_D |
|
else: |
|
raise NotImplementedError(f"Unsupported x_format: {self.x_format}") |
|
|
|
|
|
def checkpoint_norm_state(norm_state, x, scale, shift): |
|
normalized = norm_state(x) |
|
return normalized * (1 + scale) + shift |
|
|
|
|
|
class DITBuildingBlock(nn.Module): |
|
""" |
|
DIT Building Block for constructing various types of attention or MLP blocks dynamically based on a specified block type. |
|
|
|
This class instantiates different types of buildig block / attn and MLP based on config, and applies crossponding forward pass during training. |
|
|
|
Attributes: |
|
block_type (str): Type of block to be used ('spatial_sa', 'temporal_sa', 'cross_attn', 'full_attn', 'mlp'). |
|
x_dim (int): Dimensionality of the input features. |
|
context_dim (Optional[int]): Dimensionality of the external context, required for cross attention blocks. |
|
num_heads (int): Number of attention heads. |
|
mlp_ratio (float): Multiplier for the dimensionality of the MLP hidden layer compared to input. |
|
spatial_win_size (int): Window size for spatial self-attention. |
|
temporal_win_size (int): Window size for temporal self-attention. |
|
bias (bool): Whether to include bias in attention and MLP computations. |
|
mlp_dropout (float): Dropout rate for MLP blocks. |
|
n_views (int): Extra parameter used in multi-view diffusion model. It indicated total number of view we model together. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
block_type: str, |
|
x_dim: int, |
|
context_dim: Optional[int], |
|
num_heads: int, |
|
mlp_ratio: float = 4.0, |
|
window_sizes: list = [], |
|
spatial_win_size: int = 1, |
|
temporal_win_size: int = 1, |
|
bias: bool = False, |
|
mlp_dropout: float = 0.0, |
|
x_format: str = "BTHWD", |
|
use_adaln_lora: bool = False, |
|
adaln_lora_dim: int = 256, |
|
n_views: int = 1, |
|
) -> None: |
|
block_type = block_type.lower() |
|
|
|
super().__init__() |
|
self.x_format = x_format |
|
if block_type in ["cross_attn", "ca"]: |
|
self.block = VideoAttn( |
|
x_dim, |
|
context_dim, |
|
num_heads, |
|
bias=bias, |
|
x_format=self.x_format, |
|
n_views=n_views, |
|
) |
|
elif block_type in ["full_attn", "fa"]: |
|
self.block = VideoAttn(x_dim, None, num_heads, bias=bias, x_format=self.x_format) |
|
elif block_type in ["mlp", "ff"]: |
|
self.block = GPT2FeedForward(x_dim, int(x_dim * mlp_ratio), dropout=mlp_dropout, bias=bias) |
|
else: |
|
raise ValueError(f"Unknown block type: {block_type}") |
|
|
|
self.block_type = block_type |
|
self.use_adaln_lora = use_adaln_lora |
|
|
|
self.norm_state = nn.LayerNorm(x_dim, elementwise_affine=False, eps=1e-6) |
|
self.n_adaln_chunks = 3 |
|
if use_adaln_lora: |
|
self.adaLN_modulation = nn.Sequential( |
|
nn.SiLU(), |
|
nn.Linear(x_dim, adaln_lora_dim, bias=False), |
|
nn.Linear(adaln_lora_dim, self.n_adaln_chunks * x_dim, bias=False), |
|
) |
|
else: |
|
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(x_dim, self.n_adaln_chunks * x_dim, bias=False)) |
|
|
|
def forward_with_attn_memory_save( |
|
self, |
|
x_before_gate: torch.Tensor, |
|
x_skip: torch.Tensor, |
|
gate_L_B_D: torch.Tensor, |
|
emb_B_D: torch.Tensor, |
|
crossattn_emb: torch.Tensor, |
|
crossattn_mask: Optional[torch.Tensor] = None, |
|
rope_emb_L_1_1_D: Optional[torch.Tensor] = None, |
|
adaln_lora_B_3D: Optional[torch.Tensor] = None, |
|
extra_per_block_pos_emb: Optional[torch.Tensor] = None, |
|
regional_contexts: Optional[torch.Tensor] = None, |
|
region_masks: Optional[torch.Tensor] = None, |
|
): |
|
del crossattn_mask |
|
assert isinstance(self.block, VideoAttn), "only support VideoAttn impl" |
|
if self.use_adaln_lora: |
|
shift_B_D, scale_B_D, gate_B_D = (self.adaLN_modulation(emb_B_D) + adaln_lora_B_3D).chunk( |
|
self.n_adaln_chunks, dim=1 |
|
) |
|
else: |
|
shift_B_D, scale_B_D, gate_B_D = self.adaLN_modulation(emb_B_D).chunk(self.n_adaln_chunks, dim=1) |
|
|
|
shift_L_B_D, scale_L_B_D, _gate_L_B_D = ( |
|
shift_B_D.unsqueeze(0), |
|
scale_B_D.unsqueeze(0), |
|
gate_B_D.unsqueeze(0), |
|
) |
|
|
|
def _fn(_x_before_gate, _x_skip, _context): |
|
previous_block_out = _x_skip + gate_L_B_D * _x_before_gate |
|
if extra_per_block_pos_emb is not None: |
|
previous_block_out = previous_block_out + extra_per_block_pos_emb |
|
_normalized_x = self.norm_state(previous_block_out) |
|
normalized_x = _normalized_x * (1 + scale_L_B_D) + shift_L_B_D |
|
|
|
context = normalized_x if self.block.attn.is_selfattn else _context |
|
return ( |
|
self.block.attn.to_q[0](normalized_x), |
|
self.block.attn.to_k[0](context), |
|
self.block.attn.to_v[0](context), |
|
previous_block_out, |
|
) |
|
|
|
q, k, v, previous_block_out = torch.utils.checkpoint.checkpoint( |
|
_fn, x_before_gate, x_skip, crossattn_emb, use_reentrant=False |
|
) |
|
|
|
def attn_fn(_q, _k, _v): |
|
q, k, v = map( |
|
lambda t: rearrange( |
|
t, |
|
"b ... (n c) -> b ... n c", |
|
n=self.block.attn.heads // self.block.attn.tp_size, |
|
c=self.block.attn.dim_head, |
|
), |
|
(_q, _k, _v), |
|
) |
|
q = self.block.attn.to_q[1](q) |
|
k = self.block.attn.to_k[1](k) |
|
v = self.block.attn.to_v[1](v) |
|
if self.block.attn.is_selfattn and rope_emb_L_1_1_D is not None: |
|
q = apply_rotary_pos_emb(q, rope_emb_L_1_1_D, tensor_format=self.block.attn.qkv_format, fused=True) |
|
k = apply_rotary_pos_emb(k, rope_emb_L_1_1_D, tensor_format=self.block.attn.qkv_format, fused=True) |
|
|
|
if self.block.attn.is_selfattn: |
|
return q, k, v |
|
|
|
seq_dim = self.block.attn.qkv_format.index("s") |
|
assert ( |
|
q.shape[seq_dim] > 1 and k.shape[seq_dim] > 1 |
|
), "Seqlen must be larger than 1 for TE Attention starting with 1.8 TE version." |
|
if regional_contexts is not None and region_masks is not None: |
|
return self.block.attn.regional_attn_op( |
|
q, k, v, core_attention_bias_type="no_bias", core_attention_bias=None |
|
) |
|
else: |
|
return self.block.attn.attn_op( |
|
q, k, v, core_attention_bias_type="no_bias", core_attention_bias=None |
|
) |
|
|
|
assert self.block.attn.backend == "transformer_engine", "Only support transformer_engine backend for now." |
|
|
|
if self.block.attn.is_selfattn: |
|
q, k, v = torch.utils.checkpoint.checkpoint(attn_fn, q, k, v, use_reentrant=False) |
|
seq_dim = self.block.attn.qkv_format.index("s") |
|
assert ( |
|
q.shape[seq_dim] > 1 and k.shape[seq_dim] > 1 |
|
), "Seqlen must be larger than 1 for TE Attention starting with 1.8 TE version." |
|
softmax_attn_output = self.block.attn.attn_op( |
|
q, k, v, core_attention_bias_type="no_bias", core_attention_bias=None |
|
) |
|
else: |
|
softmax_attn_output = torch.utils.checkpoint.checkpoint(attn_fn, q, k, v, use_reentrant=False) |
|
attn_out = self.block.attn.to_out(softmax_attn_output) |
|
return _gate_L_B_D, attn_out, previous_block_out |
|
|
|
def forward_with_x_attn_memory_save( |
|
self, |
|
x_before_gate: torch.Tensor, |
|
x_skip: torch.Tensor, |
|
gate_L_B_D: torch.Tensor, |
|
emb_B_D: torch.Tensor, |
|
crossattn_emb: torch.Tensor, |
|
crossattn_mask: Optional[torch.Tensor] = None, |
|
rope_emb_L_1_1_D: Optional[torch.Tensor] = None, |
|
adaln_lora_B_3D: Optional[torch.Tensor] = None, |
|
extra_per_block_pos_emb: Optional[torch.Tensor] = None, |
|
regional_contexts: Optional[torch.Tensor] = None, |
|
region_masks: Optional[torch.Tensor] = None, |
|
): |
|
del crossattn_mask |
|
assert isinstance(self.block, VideoAttn) |
|
if self.use_adaln_lora: |
|
shift_B_D, scale_B_D, gate_B_D = (self.adaLN_modulation(emb_B_D) + adaln_lora_B_3D).chunk( |
|
self.n_adaln_chunks, dim=1 |
|
) |
|
else: |
|
shift_B_D, scale_B_D, gate_B_D = self.adaLN_modulation(emb_B_D).chunk(self.n_adaln_chunks, dim=1) |
|
|
|
shift_L_B_D, scale_L_B_D, _gate_L_B_D = ( |
|
shift_B_D.unsqueeze(0), |
|
scale_B_D.unsqueeze(0), |
|
gate_B_D.unsqueeze(0), |
|
) |
|
|
|
def _fn(_x_before_gate, _x_skip, _context): |
|
previous_block_out = _x_skip + gate_L_B_D * _x_before_gate |
|
if extra_per_block_pos_emb is not None: |
|
previous_block_out = previous_block_out + extra_per_block_pos_emb |
|
_normalized_x = self.norm_state(previous_block_out) |
|
normalized_x = _normalized_x * (1 + scale_L_B_D) + shift_L_B_D |
|
|
|
context = normalized_x if self.block.attn.is_selfattn else _context |
|
return ( |
|
self.block.attn.to_q[0](normalized_x), |
|
self.block.attn.to_k[0](context), |
|
self.block.attn.to_v[0](context), |
|
previous_block_out, |
|
) |
|
|
|
q, k, v, previous_block_out = torch.utils.checkpoint.checkpoint( |
|
_fn, x_before_gate, x_skip, crossattn_emb, use_reentrant=False |
|
) |
|
|
|
def x_attn_fn(_q, _k, _v): |
|
q, k, v = map( |
|
lambda t: rearrange( |
|
t, |
|
"b ... (n c) -> b ... n c", |
|
n=self.block.attn.heads // self.block.attn.tp_size, |
|
c=self.block.attn.dim_head, |
|
), |
|
(_q, _k, _v), |
|
) |
|
q = self.block.attn.to_q[1](q) |
|
k = self.block.attn.to_k[1](k) |
|
v = self.block.attn.to_v[1](v) |
|
if self.block.attn.is_selfattn and rope_emb_L_1_1_D is not None: |
|
q = apply_rotary_pos_emb(q, rope_emb_L_1_1_D, tensor_format=self.block.attn.qkv_format, fused=True) |
|
k = apply_rotary_pos_emb(k, rope_emb_L_1_1_D, tensor_format=self.block.attn.qkv_format, fused=True) |
|
|
|
seq_dim = self.block.attn.qkv_format.index("s") |
|
assert ( |
|
q.shape[seq_dim] > 1 and k.shape[seq_dim] > 1 |
|
), "Seqlen must be larger than 1 for TE Attention starting with 1.8 TE version." |
|
if regional_contexts is not None and region_masks is not None: |
|
softmax_attn_output = self.block.attn.regional_attn_op( |
|
q, k, v, core_attention_bias_type="no_bias", core_attention_bias=None |
|
) |
|
return self.block.attn.to_out(softmax_attn_output) |
|
else: |
|
softmax_attn_output = self.block.attn.attn_op( |
|
q, k, v, core_attention_bias_type="no_bias", core_attention_bias=None |
|
) |
|
return self.block.attn.to_out(softmax_attn_output) |
|
|
|
assert self.block.attn.backend == "transformer_engine", "Only support transformer_engine backend for now." |
|
|
|
attn_out = torch.utils.checkpoint.checkpoint(x_attn_fn, q, k, v, use_reentrant=False) |
|
return _gate_L_B_D, attn_out, previous_block_out |
|
|
|
def forward_with_ffn_memory_save( |
|
self, |
|
x_before_gate: torch.Tensor, |
|
x_skip: torch.Tensor, |
|
gate_L_B_D: torch.Tensor, |
|
emb_B_D: torch.Tensor, |
|
crossattn_emb: torch.Tensor, |
|
crossattn_mask: Optional[torch.Tensor] = None, |
|
rope_emb_L_1_1_D: Optional[torch.Tensor] = None, |
|
adaln_lora_B_3D: Optional[torch.Tensor] = None, |
|
extra_per_block_pos_emb: Optional[torch.Tensor] = None, |
|
regional_contexts: Optional[torch.Tensor] = None, |
|
region_masks: Optional[torch.Tensor] = None, |
|
): |
|
del crossattn_emb, crossattn_mask, rope_emb_L_1_1_D, regional_contexts, region_masks |
|
assert isinstance(self.block, GPT2FeedForward) |
|
if self.use_adaln_lora: |
|
shift_B_D, scale_B_D, gate_B_D = (self.adaLN_modulation(emb_B_D) + adaln_lora_B_3D).chunk( |
|
self.n_adaln_chunks, dim=1 |
|
) |
|
else: |
|
shift_B_D, scale_B_D, gate_B_D = self.adaLN_modulation(emb_B_D).chunk(self.n_adaln_chunks, dim=1) |
|
|
|
shift_L_B_D, scale_L_B_D, _gate_L_B_D = ( |
|
shift_B_D.unsqueeze(0), |
|
scale_B_D.unsqueeze(0), |
|
gate_B_D.unsqueeze(0), |
|
) |
|
|
|
def _fn(_x_before_gate, _x_skip): |
|
previous_block_out = _x_skip + gate_L_B_D * _x_before_gate |
|
if extra_per_block_pos_emb is not None: |
|
previous_block_out = previous_block_out + extra_per_block_pos_emb |
|
_normalized_x = self.norm_state(previous_block_out) |
|
normalized_x = _normalized_x * (1 + scale_L_B_D) + shift_L_B_D |
|
|
|
assert self.block.dropout.p == 0.0, "we skip dropout to save memory" |
|
|
|
return self.block.layer1(normalized_x), previous_block_out |
|
|
|
intermediate_output, previous_block_out = torch.utils.checkpoint.checkpoint( |
|
_fn, x_before_gate, x_skip, use_reentrant=False |
|
) |
|
|
|
def _fn2(_x): |
|
_x = self.block.activation(_x) |
|
return self.block.layer2(_x) |
|
|
|
return ( |
|
_gate_L_B_D, |
|
torch.utils.checkpoint.checkpoint(_fn2, intermediate_output, use_reentrant=False), |
|
previous_block_out, |
|
) |
|
|
|
def forward_with_ffn_memory_save_upgrade( |
|
self, |
|
x_before_gate: torch.Tensor, |
|
x_skip: torch.Tensor, |
|
gate_L_B_D: torch.Tensor, |
|
emb_B_D: torch.Tensor, |
|
crossattn_emb: torch.Tensor, |
|
crossattn_mask: Optional[torch.Tensor] = None, |
|
rope_emb_L_1_1_D: Optional[torch.Tensor] = None, |
|
adaln_lora_B_3D: Optional[torch.Tensor] = None, |
|
extra_per_block_pos_emb: Optional[torch.Tensor] = None, |
|
regional_contexts: Optional[torch.Tensor] = None, |
|
region_masks: Optional[torch.Tensor] = None, |
|
): |
|
del crossattn_emb, crossattn_mask, rope_emb_L_1_1_D, regional_contexts, region_masks |
|
assert isinstance(self.block, GPT2FeedForward) |
|
if self.use_adaln_lora: |
|
shift_B_D, scale_B_D, gate_B_D = (self.adaLN_modulation(emb_B_D) + adaln_lora_B_3D).chunk( |
|
self.n_adaln_chunks, dim=1 |
|
) |
|
else: |
|
shift_B_D, scale_B_D, gate_B_D = self.adaLN_modulation(emb_B_D).chunk(self.n_adaln_chunks, dim=1) |
|
|
|
shift_L_B_D, scale_L_B_D, _gate_L_B_D = ( |
|
shift_B_D.unsqueeze(0), |
|
scale_B_D.unsqueeze(0), |
|
gate_B_D.unsqueeze(0), |
|
) |
|
|
|
def _fn2(_x): |
|
_x = self.block.activation(_x) |
|
return self.block.layer2(_x) |
|
|
|
def _fn(_x_before_gate, _x_skip): |
|
previous_block_out = _x_skip + gate_L_B_D * _x_before_gate |
|
if extra_per_block_pos_emb is not None: |
|
previous_block_out = previous_block_out + extra_per_block_pos_emb |
|
_normalized_x = self.norm_state(previous_block_out) |
|
normalized_x = _normalized_x * (1 + scale_L_B_D) + shift_L_B_D |
|
|
|
assert self.block.dropout.p == 0.0, "we skip dropout to save memory" |
|
|
|
return _fn2(self.block.layer1(normalized_x)), previous_block_out |
|
|
|
output, previous_block_out = torch.utils.checkpoint.checkpoint(_fn, x_before_gate, x_skip, use_reentrant=False) |
|
|
|
return ( |
|
_gate_L_B_D, |
|
output, |
|
previous_block_out, |
|
) |
|
|
|
def forward_with_memory_save( |
|
self, |
|
x_before_gate: torch.Tensor, |
|
x_skip: torch.Tensor, |
|
gate_L_B_D: torch.Tensor, |
|
emb_B_D: torch.Tensor, |
|
crossattn_emb: torch.Tensor, |
|
crossattn_mask: Optional[torch.Tensor] = None, |
|
rope_emb_L_1_1_D: Optional[torch.Tensor] = None, |
|
adaln_lora_B_3D: Optional[torch.Tensor] = None, |
|
extra_per_block_pos_emb: Optional[torch.Tensor] = None, |
|
regional_contexts: Optional[torch.Tensor] = None, |
|
region_masks: Optional[torch.Tensor] = None, |
|
): |
|
if isinstance(self.block, VideoAttn): |
|
if self.block.attn.is_selfattn: |
|
fn = self.forward_with_attn_memory_save |
|
else: |
|
fn = self.forward_with_x_attn_memory_save |
|
else: |
|
|
|
fn = self.forward_with_ffn_memory_save_upgrade |
|
return fn( |
|
x_before_gate, |
|
x_skip, |
|
gate_L_B_D, |
|
emb_B_D, |
|
crossattn_emb, |
|
crossattn_mask, |
|
rope_emb_L_1_1_D, |
|
adaln_lora_B_3D, |
|
extra_per_block_pos_emb, |
|
) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
emb_B_D: torch.Tensor, |
|
crossattn_emb: torch.Tensor, |
|
crossattn_mask: Optional[torch.Tensor] = None, |
|
rope_emb_L_1_1_D: Optional[torch.Tensor] = None, |
|
adaln_lora_B_3D: Optional[torch.Tensor] = None, |
|
regional_contexts: Optional[torch.Tensor] = None, |
|
region_masks: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
""" |
|
Forward pass for dynamically configured blocks with adaptive normalization. |
|
|
|
Args: |
|
x (Tensor): Input tensor of shape (B, T, H, W, D) or (T, H, W, B, D). |
|
emb_B_D (Tensor): Embedding tensor for adaptive layer normalization modulation. |
|
crossattn_emb (Tensor): Tensor for cross-attention blocks. |
|
crossattn_mask (Optional[Tensor]): Optional mask for cross-attention. |
|
rope_emb_L_1_1_D (Optional[Tensor]): Rotary positional embedding tensor of shape (L, 1, 1, D). L == THW for current video training. transformer_engine format |
|
adaln_lora_B_3D (Optional[Tensor]): Additional embedding for adaptive layer norm. |
|
regional_contexts (Optional[List[Tensor]]): List of regional context tensors. |
|
region_masks (Optional[Tensor]): Region masks of shape (B, R, THW). |
|
|
|
Returns: |
|
Tensor: The output tensor after processing through the configured block and adaptive normalization. |
|
""" |
|
if self.use_adaln_lora: |
|
shift_B_D, scale_B_D, gate_B_D = (self.adaLN_modulation(emb_B_D) + adaln_lora_B_3D).chunk( |
|
self.n_adaln_chunks, dim=1 |
|
) |
|
else: |
|
shift_B_D, scale_B_D, gate_B_D = self.adaLN_modulation(emb_B_D).chunk(self.n_adaln_chunks, dim=1) |
|
|
|
if self.x_format == "BTHWD": |
|
shift_B_1_1_1_D, scale_B_1_1_1_D, gate_B_1_1_1_D = ( |
|
shift_B_D.unsqueeze(1).unsqueeze(2).unsqueeze(3), |
|
scale_B_D.unsqueeze(1).unsqueeze(2).unsqueeze(3), |
|
gate_B_D.unsqueeze(1).unsqueeze(2).unsqueeze(3), |
|
) |
|
if self.block_type in ["spatial_sa", "temporal_sa", "window_attn", "ssa", "tsa", "wa"]: |
|
x = x + gate_B_1_1_1_D * self.block( |
|
self.norm_state(x) * (1 + scale_B_1_1_1_D) + shift_B_1_1_1_D, |
|
rope_emb_L_1_1_D=rope_emb_L_1_1_D, |
|
) |
|
elif self.block_type in ["full_attn", "fa"]: |
|
x = x + gate_B_1_1_1_D * self.block( |
|
self.norm_state(x) * (1 + scale_B_1_1_1_D) + shift_B_1_1_1_D, |
|
context=None, |
|
rope_emb_L_1_1_D=rope_emb_L_1_1_D, |
|
) |
|
elif self.block_type in ["cross_attn", "ca"]: |
|
normalized_x = self.norm_state(x) * (1 + scale_B_1_1_1_D) + shift_B_1_1_1_D |
|
x = x + gate_B_1_1_1_D * self.block( |
|
normalized_x, |
|
crossattn_emb, |
|
crossattn_mask, |
|
rope_emb_L_1_1_D, |
|
regional_contexts=regional_contexts, |
|
region_masks=region_masks, |
|
) |
|
elif self.block_type in ["mlp", "ff"]: |
|
x = x + gate_B_1_1_1_D * self.block( |
|
self.norm_state(x) * (1 + scale_B_1_1_1_D) + shift_B_1_1_1_D, |
|
) |
|
else: |
|
raise ValueError(f"Unknown block type: {self.block_type}") |
|
elif self.x_format == "THWBD": |
|
shift_1_1_1_B_D, scale_1_1_1_B_D, gate_1_1_1_B_D = ( |
|
shift_B_D.unsqueeze(0).unsqueeze(0).unsqueeze(0), |
|
scale_B_D.unsqueeze(0).unsqueeze(0).unsqueeze(0), |
|
gate_B_D.unsqueeze(0).unsqueeze(0).unsqueeze(0), |
|
) |
|
|
|
if self.block_type in ["mlp", "ff"]: |
|
x = x + gate_1_1_1_B_D * self.block( |
|
torch.utils.checkpoint.checkpoint( |
|
checkpoint_norm_state, self.norm_state, x, scale_1_1_1_B_D, shift_1_1_1_B_D, use_reentrant=False |
|
), |
|
) |
|
elif self.block_type in ["full_attn", "fa"]: |
|
x = x + gate_1_1_1_B_D * self.block( |
|
torch.utils.checkpoint.checkpoint( |
|
checkpoint_norm_state, self.norm_state, x, scale_1_1_1_B_D, shift_1_1_1_B_D, use_reentrant=False |
|
), |
|
context=None, |
|
rope_emb_L_1_1_D=rope_emb_L_1_1_D, |
|
) |
|
elif self.block_type in ["cross_attn", "ca"]: |
|
x = x + gate_1_1_1_B_D * self.block( |
|
torch.utils.checkpoint.checkpoint( |
|
checkpoint_norm_state, self.norm_state, x, scale_1_1_1_B_D, shift_1_1_1_B_D, use_reentrant=False |
|
), |
|
context=crossattn_emb, |
|
crossattn_mask=crossattn_mask, |
|
rope_emb_L_1_1_D=rope_emb_L_1_1_D, |
|
) |
|
else: |
|
raise ValueError(f"Unknown block type: {self.block_type}") |
|
else: |
|
raise NotImplementedError(f"Unsupported x_format: {self.x_format}") |
|
return x |
|
|
|
|
|
class GeneralDITTransformerBlock(nn.Module): |
|
""" |
|
This class is a wrapper for a list of DITBuildingBlock. |
|
It's not essential, refactor it if needed. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
x_dim: int, |
|
context_dim: int, |
|
num_heads: int, |
|
block_config: str, |
|
mlp_ratio: float = 4.0, |
|
window_sizes: list = [], |
|
spatial_attn_win_size: int = 1, |
|
temporal_attn_win_size: int = 1, |
|
use_checkpoint: bool = False, |
|
x_format: str = "BTHWD", |
|
use_adaln_lora: bool = False, |
|
adaln_lora_dim: int = 256, |
|
n_views: int = 1, |
|
): |
|
super().__init__() |
|
self.blocks = nn.ModuleList() |
|
self.x_format = x_format |
|
for block_type in block_config.split("-"): |
|
self.blocks.append( |
|
DITBuildingBlock( |
|
block_type, |
|
x_dim, |
|
context_dim, |
|
num_heads, |
|
mlp_ratio, |
|
window_sizes, |
|
spatial_attn_win_size, |
|
temporal_attn_win_size, |
|
x_format=self.x_format, |
|
use_adaln_lora=use_adaln_lora, |
|
adaln_lora_dim=adaln_lora_dim, |
|
n_views=n_views, |
|
) |
|
) |
|
self.use_checkpoint = use_checkpoint |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
emb_B_D: torch.Tensor, |
|
crossattn_emb: torch.Tensor, |
|
crossattn_mask: Optional[torch.Tensor] = None, |
|
rope_emb_L_1_1_D: Optional[torch.Tensor] = None, |
|
adaln_lora_B_3D: Optional[torch.Tensor] = None, |
|
extra_per_block_pos_emb: Optional[torch.Tensor] = None, |
|
regional_contexts: Optional[torch.Tensor] = None, |
|
region_masks: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
if self.use_checkpoint: |
|
return torch.utils.checkpoint.checkpoint( |
|
self._forward, |
|
x, |
|
emb_B_D, |
|
crossattn_emb, |
|
crossattn_mask, |
|
rope_emb_L_1_1_D, |
|
adaln_lora_B_3D, |
|
extra_per_block_pos_emb, |
|
regional_contexts, |
|
region_masks, |
|
use_reentrant=False, |
|
) |
|
else: |
|
return self._forward( |
|
x, |
|
emb_B_D, |
|
crossattn_emb, |
|
crossattn_mask, |
|
rope_emb_L_1_1_D, |
|
adaln_lora_B_3D, |
|
extra_per_block_pos_emb, |
|
regional_contexts, |
|
region_masks, |
|
) |
|
|
|
def _forward( |
|
self, |
|
x: torch.Tensor, |
|
emb_B_D: torch.Tensor, |
|
crossattn_emb: torch.Tensor, |
|
crossattn_mask: Optional[torch.Tensor] = None, |
|
rope_emb_L_1_1_D: Optional[torch.Tensor] = None, |
|
adaln_lora_B_3D: Optional[torch.Tensor] = None, |
|
extra_per_block_pos_emb: Optional[torch.Tensor] = None, |
|
regional_contexts: Optional[torch.Tensor] = None, |
|
region_masks: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
if extra_per_block_pos_emb is not None: |
|
x = x + extra_per_block_pos_emb |
|
for block in self.blocks: |
|
x = block( |
|
x, |
|
emb_B_D, |
|
crossattn_emb, |
|
crossattn_mask, |
|
rope_emb_L_1_1_D=rope_emb_L_1_1_D, |
|
adaln_lora_B_3D=adaln_lora_B_3D, |
|
regional_contexts=regional_contexts, |
|
region_masks=region_masks, |
|
) |
|
return x |
|
|
|
def set_memory_save(self, mode: bool = True): |
|
|
|
|
|
if mode: |
|
self.forward = self.forward_with_memory_save |
|
for block in self.blocks: |
|
block.forward = block.forward_with_memory_save |
|
else: |
|
raise NotImplementedError("Not implemented yet.") |
|
|
|
def forward_with_memory_save( |
|
self, |
|
x_before_gate: torch.Tensor, |
|
x_skip: torch.Tensor, |
|
gate_L_B_D: torch.Tensor, |
|
emb_B_D: torch.Tensor, |
|
crossattn_emb: torch.Tensor, |
|
crossattn_mask: Optional[torch.Tensor] = None, |
|
rope_emb_L_1_1_D: Optional[torch.Tensor] = None, |
|
adaln_lora_B_3D: Optional[torch.Tensor] = None, |
|
extra_per_block_pos_emb: Optional[torch.Tensor] = None, |
|
regional_contexts: Optional[torch.Tensor] = None, |
|
region_masks: Optional[torch.Tensor] = None, |
|
): |
|
for block in self.blocks: |
|
gate_L_B_D, x_before_gate, x_skip = block.forward( |
|
x_before_gate, |
|
x_skip, |
|
gate_L_B_D, |
|
emb_B_D, |
|
crossattn_emb, |
|
crossattn_mask, |
|
rope_emb_L_1_1_D, |
|
adaln_lora_B_3D, |
|
extra_per_block_pos_emb, |
|
regional_contexts=regional_contexts, |
|
region_masks=region_masks, |
|
) |
|
extra_per_block_pos_emb = None |
|
return gate_L_B_D, x_before_gate, x_skip |
|
|