|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
import os |
|
import threading |
|
from typing import TYPE_CHECKING |
|
|
|
import torch |
|
|
|
from cosmos_transfer1.utils import callback, distributed, log, misc |
|
from cosmos_transfer1.utils.model import Model |
|
|
|
if TYPE_CHECKING: |
|
from cosmos_transfer1.utils.config import CheckpointConfig, JobConfig |
|
|
|
|
|
class Checkpointer: |
|
"""The checkpointer class. Supports checkpoint saving/loading to local disk.""" |
|
|
|
def __init__(self, config_checkpoint: CheckpointConfig, config_job: JobConfig, callbacks: callback.CallBackGroup): |
|
"""Constructor of the checkpointer. |
|
|
|
Args: |
|
config_checkpoint (CheckpointConfig): The config object for the checkpointer. |
|
""" |
|
|
|
self.callbacks = callbacks |
|
self.checkpoint_dir_local = f"{config_job.path_local}/checkpoints" |
|
self.strict_resume = config_checkpoint.strict_resume |
|
self.load_path = config_checkpoint.load_path or None |
|
self.load_training_state = config_checkpoint.load_training_state |
|
self.only_load_scheduler_state = config_checkpoint.only_load_scheduler_state |
|
self.save_thread = None |
|
|
|
def save( |
|
self, |
|
model: Model, |
|
optimizer: torch.optim.Optimizer, |
|
scheduler: torch.optim.lr_scheduler.LRScheduler, |
|
grad_scaler: torch.amp.GradScaler, |
|
iteration: int, |
|
) -> None: |
|
"""Save network weights, optimizer parameters, scheduler parameters to a checkpoint. |
|
|
|
Args: |
|
model (Model): The PyTorch model. |
|
optimizer (torch.optim.Optimizer): The model optimizer. |
|
scheduler (torch.optim.lr_scheduler.LRScheduler): The optimization scheduler. |
|
grad_scaler (torch.amp.GradScaler): The gradient scaler (for mixed precision training). |
|
iteration (int): Current iteration number. |
|
""" |
|
self.callbacks.on_save_checkpoint_start(model, iteration) |
|
|
|
checkpoint_file = f"iter_{iteration:09}.pt" |
|
|
|
if distributed.get_rank() == 0: |
|
state_dict = dict( |
|
model=model.state_dict(), |
|
optimizer=optimizer.state_dict(), |
|
scheduler=scheduler.state_dict(), |
|
grad_scaler=grad_scaler.state_dict(), |
|
iteration=iteration, |
|
) |
|
state_dict = misc.to(state_dict, device="cpu") |
|
self.callbacks.on_save_checkpoint(model, state_dict=state_dict) |
|
|
|
if self.save_thread: |
|
self.save_thread.join() |
|
|
|
self.save_thread = threading.Thread( |
|
target=self._save_worker_local, |
|
daemon=False, |
|
args=(state_dict, checkpoint_file, distributed.get_rank()), |
|
) |
|
self.save_thread.start() |
|
|
|
|
|
|
|
self.callbacks.on_save_checkpoint_end(model=None, iteration=iteration) |
|
|
|
@misc.timer("checkpoint saving (local)") |
|
def _save_worker_local(self, state_dict: dict[str, torch.Tensor], checkpoint_file: str, rank: int = 0) -> None: |
|
"""Worker to save checkpoint to local disk, spawned with a child thread (runs in parallel with the training). |
|
|
|
Args: |
|
state_dict (dict[str, torch.Tensor]): The state dict of the model/optimizer/scheduler. |
|
checkpoint_file (str): The file name of the model checkpoint. |
|
rank (int): GPU device (default: 0). |
|
""" |
|
checkpoint_path = os.path.join(self.checkpoint_dir_local, checkpoint_file) |
|
os.makedirs(self.checkpoint_dir_local, exist_ok=True) |
|
try: |
|
torch.save(state_dict, checkpoint_path) |
|
if rank == 0: |
|
self._write_latest_checkpoint_file(checkpoint_file) |
|
log.success(f"Saved checkpoint (local): {checkpoint_path}") |
|
iteration = int(checkpoint_file.replace("iter_", "").replace(".pt", "")) |
|
self.callbacks.on_save_checkpoint_success(iteration=iteration) |
|
except Exception as e: |
|
log.exception(f"Checkpoint failed to save (local): {e}") |
|
|
|
@misc.timer("checkpoint loading") |
|
def load( |
|
self, |
|
model: Model, |
|
optimizer: torch.optim.Optimizer | None = None, |
|
scheduler: torch.optim.lr_scheduler.LRScheduler | None = None, |
|
grad_scaler: torch.amp.GradScaler | None = None, |
|
) -> int: |
|
"""Load network weights and optimizer states from a checkpoint in a single process. |
|
|
|
The priority of the checkpoint loading logic is: |
|
1. Attempt to resume training if possible by looking for latest_checkpoint.txt under the same name. |
|
2. If no latest checkpoint were found, it loads the model weights specified by config_checkpoint.path. |
|
- This is typically used for inference mode. |
|
- If config_checkpoint.load_optimizer_state is True, then also load the optimizer and scheduler states. |
|
3. If none of the above, randomly initialize the model parameters and train from scratch. |
|
|
|
Args: |
|
model (Model): The PyTorch model. |
|
optimizer (torch.optim.Optimizer | None): The model optimizer (default: None). |
|
scheduler (torch.optim.lr_scheduler.LRScheduler | None): The optimization scheduler (default: None). |
|
grad_scaler (torch.amp.GradScaler | None): The gradient scaler (for mixed precision training). |
|
|
|
Returns: |
|
iteration (int): the iteration number to start/resume from. |
|
""" |
|
self.callbacks.on_load_checkpoint_start(model) |
|
|
|
latest_checkpoint_file = self._read_latest_checkpoint_file() |
|
if latest_checkpoint_file is not None: |
|
|
|
checkpoint_dir = self.checkpoint_dir_local |
|
checkpoint_path = os.path.join(checkpoint_dir, latest_checkpoint_file) |
|
resume = True |
|
only_resume_scheduler = True |
|
else: |
|
if self.load_path: |
|
|
|
checkpoint_path = self.load_path |
|
resume = self.load_training_state |
|
only_resume_scheduler = self.only_load_scheduler_state |
|
else: |
|
|
|
checkpoint_path = None |
|
resume = False |
|
only_resume_scheduler = False |
|
|
|
if checkpoint_path is not None: |
|
self._check_checkpoint_exists(checkpoint_path) |
|
log.info(f"Loading checkpoint (local): {checkpoint_path}") |
|
state_dict = torch.load(checkpoint_path, map_location=lambda storage, loc: storage, weights_only=False) |
|
log.success(f"Complete loading checkpoint (local): {checkpoint_path}") |
|
self.callbacks.on_load_checkpoint(model, state_dict=state_dict) |
|
|
|
log.info("- Loading the model...") |
|
if "model" in state_dict: |
|
model.load_state_dict(state_dict["model"], strict=self.strict_resume) |
|
else: |
|
model.load_state_dict(state_dict, strict=self.strict_resume) |
|
if resume or only_resume_scheduler: |
|
iteration = state_dict["iteration"] |
|
assert scheduler |
|
log.info("- Loading the scheduler...") |
|
scheduler.load_state_dict(state_dict["scheduler"]) |
|
scheduler.last_epoch = iteration |
|
else: |
|
iteration = 0 |
|
if resume: |
|
assert optimizer |
|
log.info("- Loading the optimizer...") |
|
optimizer.load_state_dict(state_dict["optimizer"]) |
|
log.info("- Loading the gradient scaler...") |
|
grad_scaler.load_state_dict(state_dict["grad_scaler"]) |
|
log.success(f"Done with loading the checkpoint (iteration {iteration}).") |
|
else: |
|
log.success("Done with loading the checkpoint.") |
|
else: |
|
|
|
iteration = 0 |
|
log.info("Training from scratch.") |
|
torch.cuda.empty_cache() |
|
|
|
self.callbacks.on_load_checkpoint_end(model) |
|
|
|
return iteration |
|
|
|
def _read_latest_checkpoint_file(self) -> str | None: |
|
"""Get the file name of the latest saved checkpoint. If it doesn't exist, return None. |
|
|
|
Returns: |
|
checkpoint_file (str | None): file name of the latest saved checkpoint. |
|
""" |
|
checkpoint_file = None |
|
latest_path = os.path.join(self.checkpoint_dir_local, "latest_checkpoint.txt") |
|
if os.path.isfile(latest_path): |
|
checkpoint_file = open(latest_path).read().strip() |
|
return checkpoint_file |
|
|
|
def _write_latest_checkpoint_file(self, checkpoint_file: str) -> None: |
|
"""Track the file name of the latest saved checkpoint. |
|
|
|
Args: |
|
checkpoint_file (str): file name of the latest saved checkpoint. |
|
""" |
|
content = f"{checkpoint_file}\n" |
|
latest_path = os.path.join(self.checkpoint_dir_local, "latest_checkpoint.txt") |
|
with open(latest_path, "w") as file: |
|
file.write(content) |
|
|
|
def _check_checkpoint_exists(self, checkpoint_path: str) -> None: |
|
"""If the file checkpoint_path does not exist, raise an error. |
|
|
|
Args: |
|
checkpoint_path (str): full path to the checkpoint. |
|
""" |
|
if not os.path.exists(checkpoint_path): |
|
raise FileNotFoundError(f"File not found (local): {checkpoint_path}") |
|
|
|
def finalize(self) -> None: |
|
"""Finalize the checkpointer.""" |
|
if self.save_thread: |
|
self.save_thread.join() |
|
|