# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional import omegaconf import torch import torchvision.transforms.functional as transforms_F from cosmos_transfer1.diffusion.datasets.augmentors.control_input import Augmentor from cosmos_transfer1.diffusion.datasets.dataset_utils import obtain_augmentation_size, obtain_image_size class ReflectionPadding(Augmentor): def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None: super().__init__(input_keys, output_keys, args) def __call__(self, data_dict: dict) -> dict: r"""Performs reflection padding. This function also returns a padding mask. Args: data_dict (dict): Input data dict Returns: data_dict (dict): Output dict where images are center cropped. """ assert self.args is not None, "Please specify args in augmentation" if self.output_keys is None: self.output_keys = self.input_keys # Obtain image and augmentation sizes orig_w, orig_h = obtain_image_size(data_dict, self.input_keys) target_size = obtain_augmentation_size(data_dict, self.args) assert isinstance(target_size, (tuple, omegaconf.listconfig.ListConfig)), "Please specify target size as tuple" target_w, target_h = target_size target_w = int(target_w) target_h = int(target_h) # Calculate padding vals padding_left = int((target_w - orig_w) / 2) padding_right = target_w - orig_w - padding_left padding_top = int((target_h - orig_h) / 2) padding_bottom = target_h - orig_h - padding_top padding_vals = [padding_left, padding_top, padding_right, padding_bottom] for inp_key, out_key in zip(self.input_keys, self.output_keys): if max(padding_vals[0], padding_vals[2]) >= orig_w or max(padding_vals[1], padding_vals[3]) >= orig_h: # In this case, we can't perform reflection padding. This is because padding values # are larger than the image size. So, perform edge padding instead. data_dict[out_key] = transforms_F.pad(data_dict[inp_key], padding_vals, padding_mode="edge") else: # Perform reflection padding data_dict[out_key] = transforms_F.pad(data_dict[inp_key], padding_vals, padding_mode="reflect") if out_key != inp_key: del data_dict[inp_key] # Return padding_mask when padding is performed. # Padding mask denotes which pixels are padded. padding_mask = torch.ones((1, target_h, target_w)) padding_mask[:, padding_top : (padding_top + orig_h), padding_left : (padding_left + orig_w)] = 0 data_dict["padding_mask"] = padding_mask data_dict["image_size"] = torch.tensor([target_h, target_w, orig_h, orig_w], dtype=torch.float) return data_dict class ResizeSmallestSide(Augmentor): def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None: super().__init__(input_keys, output_keys, args) def __call__(self, data_dict: dict) -> dict: r"""Performs resizing to smaller side Args: data_dict (dict): Input data dict Returns: data_dict (dict): Output dict where images are resized """ if self.output_keys is None: self.output_keys = self.input_keys assert self.args is not None, "Please specify args in augmentations" for inp_key, out_key in zip(self.input_keys, self.output_keys): out_size = obtain_augmentation_size(data_dict, self.args) assert isinstance(out_size, int), "Arg size in resize should be an integer" data_dict[out_key] = transforms_F.resize( data_dict[inp_key], size=out_size, # type: ignore interpolation=getattr(self.args, "interpolation", transforms_F.InterpolationMode.BICUBIC), antialias=True, ) if out_key != inp_key: del data_dict[inp_key] return data_dict class ResizeLargestSide(Augmentor): def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None: super().__init__(input_keys, output_keys, args) def __call__(self, data_dict: dict) -> dict: r"""Performs resizing to larger side Args: data_dict (dict): Input data dict Returns: data_dict (dict): Output dict where images are resized """ if self.output_keys is None: self.output_keys = self.input_keys assert self.args is not None, "Please specify args in augmentations" for inp_key, out_key in zip(self.input_keys, self.output_keys): out_size = obtain_augmentation_size(data_dict, self.args) assert isinstance(out_size, int), "Arg size in resize should be an integer" orig_w, orig_h = obtain_image_size(data_dict, self.input_keys) scaling_ratio = min(out_size / orig_w, out_size / orig_h) target_size = [int(scaling_ratio * orig_h), int(scaling_ratio * orig_w)] data_dict[out_key] = transforms_F.resize( data_dict[inp_key], size=target_size, interpolation=getattr(self.args, "interpolation", transforms_F.InterpolationMode.BICUBIC), antialias=True, ) if out_key != inp_key: del data_dict[inp_key] return data_dict class ResizeSmallestSideAspectPreserving(Augmentor): def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None: super().__init__(input_keys, output_keys, args) def __call__(self, data_dict: dict) -> dict: r"""Performs aspect-ratio preserving resizing. Image is resized to the dimension which has the smaller ratio of (size / target_size). First we compute (w_img / w_target) and (h_img / h_target) and resize the image to the dimension that has the smaller of these ratios. Args: data_dict (dict): Input data dict Returns: data_dict (dict): Output dict where images are resized """ if self.output_keys is None: self.output_keys = self.input_keys assert self.args is not None, "Please specify args in augmentations" img_size = obtain_augmentation_size(data_dict, self.args) assert isinstance( img_size, (tuple, omegaconf.listconfig.ListConfig) ), f"Arg size in resize should be a tuple, get {type(img_size)}, {img_size}" img_w, img_h = img_size orig_w, orig_h = obtain_image_size(data_dict, self.input_keys) scaling_ratio = max((img_w / orig_w), (img_h / orig_h)) target_size = (int(scaling_ratio * orig_h + 0.5), int(scaling_ratio * orig_w + 0.5)) assert ( target_size[0] >= img_h and target_size[1] >= img_w ), f"Resize error. orig {(orig_w, orig_h)} desire {img_size} compute {target_size}" for inp_key, out_key in zip(self.input_keys, self.output_keys): data_dict[out_key] = transforms_F.resize( data_dict[inp_key], size=target_size, # type: ignore interpolation=getattr(self.args, "interpolation", transforms_F.InterpolationMode.BICUBIC), antialias=True, ) if out_key != inp_key: del data_dict[inp_key] return data_dict class ResizeLargestSideAspectPreserving(Augmentor): def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None: super().__init__(input_keys, output_keys, args) def __call__(self, data_dict: dict) -> dict: r"""Performs aspect-ratio preserving resizing. Image is resized to the dimension which has the larger ratio of (size / target_size). First we compute (w_img / w_target) and (h_img / h_target) and resize the image to the dimension that has the larger of these ratios. Args: data_dict (dict): Input data dict Returns: data_dict (dict): Output dict where images are resized """ if self.output_keys is None: self.output_keys = self.input_keys assert self.args is not None, "Please specify args in augmentations" img_size = obtain_augmentation_size(data_dict, self.args) assert isinstance( img_size, (tuple, omegaconf.listconfig.ListConfig) ), f"Arg size in resize should be a tuple, get {type(img_size)}, {img_size}" img_w, img_h = img_size orig_w, orig_h = obtain_image_size(data_dict, self.input_keys) scaling_ratio = min((img_w / orig_w), (img_h / orig_h)) target_size = (int(scaling_ratio * orig_h + 0.5), int(scaling_ratio * orig_w + 0.5)) assert ( target_size[0] <= img_h and target_size[1] <= img_w ), f"Resize error. orig {(orig_w, orig_h)} desire {img_size} compute {target_size}" for inp_key, out_key in zip(self.input_keys, self.output_keys): data_dict[out_key] = transforms_F.resize( data_dict[inp_key], size=target_size, # type: ignore interpolation=getattr(self.args, "interpolation", transforms_F.InterpolationMode.BICUBIC), antialias=True, ) if out_key != inp_key: del data_dict[inp_key] return data_dict